Lei Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/9158049/lei-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21	794	13	24
papers	citations	h-index	g-index
24	1,028 ext. citations	14.9	4.41
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
21	The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. <i>Progress in Energy and Combustion Science</i> , 2019 , 71, 1-80	33.6	184
20	Environmental sustainability of bioethanol production from wheat straw in the UK. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 28, 715-725	16.2	95
19	Techno-economic potential of bioethanol from bamboo in China. <i>Biotechnology for Biofuels</i> , 2013 , 6, 173	7.8	65
18	Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. <i>Applied Energy</i> , 2013 , 111, 1172-1182	10.7	62
17	A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery. <i>Bioresource Technology</i> , 2012 , 120, 89-98	11	59
16	High-solids loading enzymatic hydrolysis of waste papers for biofuel production. <i>Applied Energy</i> , 2012 , 99, 23-31	10.7	59
15	Technology performance and economic feasibility of bioethanol production from various waste papers. <i>Energy and Environmental Science</i> , 2012 , 5, 5717-5730	35.4	52
14	Importance of policy support and feedstock prices on economic feasibility of bioethanol production from wheat straw in the UK. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 17, 291-300	16.2	47
13	Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 40, 571-582	16.2	41
12	Integrated biorefineries: CO2 utilization for maximum biomass conversion. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 47, 151-161	16.2	39
11	Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China. <i>Waste Management</i> , 2020 , 113, 447-455	8.6	27
10	Environmental sustainability of bioethanol production from waste papers: sensitivity to the system boundary. <i>Energy and Environmental Science</i> , 2012 , 5, 8281	35.4	26
9	Improved value and carbon footprint by complete utilization of corncob lignocellulose. <i>Chemical Engineering Journal</i> , 2021 , 419, 129565	14.7	15
8	Comparative study of municipal solid waste incinerator fly ash reutilization in China: Environmental and economic performances. <i>Resources, Conservation and Recycling</i> , 2021 , 169, 105541	11.9	7
7	Life cycle assessment of organosolv biorefinery designs with the complete use of biomass. <i>Energy Conversion and Management</i> , 2021 , 246, 114653	10.6	4
6	Eco-friendly and multifunctional lignocellulosic nanofibre additives for enhancing pesticide deposition and retention. <i>Chemical Engineering Journal</i> , 2022 , 430, 133011	14.7	3
5	Synthetic biology enables field-deployable biosensors for water contaminants. <i>TrAC - Trends in Analytical Chemistry</i> , 2022 , 146, 116507	14.6	2

LIST OF PUBLICATIONS

4 Intein-assisted bisection mapping systematically splits proteins for Boolean logic and inducibility engineering 2

3	Toughened Hydrogels through UV Grafting of Cellulose Nanofibers. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 1507-1511	8.3	1
2	Cellulose or chitin nanofibril-stabilized latex for medical adhesion via tailoring colloidal interactions <i>Carbohydrate Polymers</i> , 2022 , 278, 118916	10.3	O
1	Potential trade-off between water consumption and water quality: life cycle assessment of nonaqueous solvent dyeing <i>Water Research</i> , 2022 , 215, 118222	12.5	О