Enrico Giraudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9157956/publications.pdf

Version: 2024-02-01

101384 5,338 65 36 citations h-index papers

g-index 66 66 66 7901 docs citations times ranked citing authors all docs

161609

54

#	Article	IF	CITATIONS
1	Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- <i>a</i>]pyridine Scaffold: SAR of the Biphenyl Moiety. Journal of Medicinal Chemistry, 2021, 64, 5404-5428.	2.9	19
2	Albumin nanoformulations as an innovative solution to overcome doxorubicin chemoresistance., 2021, 4, 192-207.		3
3	HIV Protease Inhibitors Block HPV16-Induced Murine Cervical Carcinoma and Promote Vessel Normalization in Association with MMP-9 Inhibition and TIMP-3 Induction. Molecular Cancer Therapeutics, 2020, 19, 2476-2489.	1.9	5
4	CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth. JCI Insight, 2020, 5, .	2.3	23
5	Abstract B069: Temozolomide drives mismatch repair deficiency and fosters neoantigen generation in tumor cells., 2019,,.		O
6	Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front. American Journal of Pathology, 2018, 188, 1276-1288.	1.9	28
7	A rationally designed NRP1-independent superagonist SEMA3A mutant is an effective anticancer agent. Science Translational Medicine, 2018, 10, .	5.8	46
8	Therapeutic Silencing of miR-214 Inhibits Tumor Progression in Multiple Mouse Models. Molecular Therapy, 2018, 26, 2008-2018.	3.7	26
9	α-ketoglutarate dehydrogenase inhibition counteracts breast cancer-associated lung metastasis. Cell Death and Disease, 2018, 9, 756.	2.7	54
10	Abstract 5723: Inactivation of DNA repair triggers neoantigen generation and impairs tumor growth. Cancer Research, 2018, 78, 5723-5723.	0.4	5
11	Abstract 2743: Accumulation of predicted neoantigens by MMR deficiency triggered by temozolomide treatment of human colorectal cancer. , 2018, , .		O
12	Sema3F (Semaphorin 3F) Selectively Drives an Extraembryonic Proangiogenic Program. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1710-1721.	1.1	12
13	Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature, 2017, 552, 116-120.	13.7	480
14	Multivalent cationic pseudopeptide polyplexes as a tool for cancer therapy. Oncotarget, 2017, 8, 90108-90122.	0.8	15
15	Abstract PR13: Inactivation of DNA repair triggers dynamic neoantigen evolution and impairs cancer growth. , 2017, , .		O
16	Class 3 semaphorins in cardiovascular development. Cell Adhesion and Migration, 2016, 10, 641-651.	1.1	40
17	Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling. Scientific Reports, 2016, 6, 32602.	1.6	57
18	Nucleolin Targeting Impairs the Progression of Pancreatic Cancer and Promotes the Normalization of Tumor Vasculature. Cancer Research, 2016, 76, 7181-7193.	0.4	99

#	Article	IF	CITATIONS
19	Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity. Journal of Translational Medicine, 2016, 14, 119.	1.8	18
20	Abstract 3366: NCL targeting impairs the progression of pancreatic ductal adenocarcinoma and promotes tumor vessel normalization through Ang-2 inhibition. , 2016, , .		0
21	Abstract 3372: Semaphorin 3A normalizes the tumor vasculature and impairs tumor progression in a Nrp-1-independent manner. , $2016, \ldots$		O
22	Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability. Molecular and Cellular Proteomics, 2015, 14, 621-634.	2.5	85
23	The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Scientific Reports, 2015, 5, 9054.	1.6	56
24	Tumor Angiogenesis: Methods to Analyze Tumor Vasculature and Vessel Normalization in Mouse Models of Cancer. Methods in Molecular Biology, 2015, 1267, 349-365.	0.4	9
25	Abstract A02: Nucleolin antagonist peptide N6L, normalizes tumor vasculature by decreasing Ang-2 secretion and inhibits pancreatic ductal adenocarcinoma growth and metastasis., 2015,,.		0
26	Abstract B17: In-depth proteomics unveils fatty acid oxidation role in controlling vascular permeability. , 2015, , .		0
27	Abstract A16: Semaphorin 3A normalizes the tumor vasculature and impairs cancer progression in a Nrp-1-independent manner. , $2015, \ldots$		0
28	Class 3 Semaphorin in Angiogenesis and Lymphangiogenesis. Chemical Immunology and Allergy, 2014, 99, 71-88.	1.7	15
29	Semaphorins in cardiovascular medicine. Trends in Molecular Medicine, 2014, 20, 589-598.	3.5	16
30	Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. Journal of Controlled Release, 2014, 192, 29-39.	4.8	48
31	Abstract 4807: Zoledronic acid overcomes the resistance to the anti-angiogenic therapy and normalizes tumor vessels by switching from a M2- to a M1-like macrophages phenotype in a mouse model of spontaneous cervical cancer. , 2014, , .		0
32	Abstract 15: Nucleolin-targeting NUCANT normalizes tumor vasculature and inhibits tumor growth and metastasis formation in mouse models of cancer. , 2014 , , .		0
33	Abstract LB-256: Immunotherapy using genetically modified T lymphocytes to target CLEC14A on the tumor vasculature. Cancer Research, 2014, 74, LB-256-LB-256.	0.4	1
34	SILAC-Based Proteomics of Human Primary Endothelial Cell Morphogenesis Unveils Tumor Angiogenic Markers. Molecular and Cellular Proteomics, 2013, 12, 3599-3611.	2.5	55
35	The role of semaphorins and their receptors in vascular development and cancer. Experimental Cell Research, 2013, 319, 1306-1316.	1.2	102
36	Class 3 semaphorins: physiological vascular normalizing agents for antiâ€cancer therapy. Journal of Internal Medicine, 2013, 273, 138-155.	2.7	37

3

#	Article	IF	Citations
37	Preclinical activity of lenalidomide in metastatic colorectal cancer Journal of Clinical Oncology, 2013, 31, e14654-e14654.	0.8	2
38	Semaphorin 4A Exerts a Proangiogenic Effect by Enhancing Vascular Endothelial Growth Factor-A Expression in Macrophages. Journal of Immunology, 2012, 188, 4081-4092.	0.4	64
39	Neuropilin-1 Identifies a Subset of Bone Marrow Gr1â^ Monocytes That Can Induce Tumor Vessel Normalization and Inhibit Tumor Growth. Cancer Research, 2012, 72, 6371-6381.	0.4	51
40	IL-12-dependent innate immunity arrests endothelial cells in G0–G1 phase by a p21Cip1/Waf1-mediated mechanism. Angiogenesis, 2012, 15, 713-725.	3.7	5
41	Tumour growth inhibition and antiâ€metastatic activity of a mutated furinâ€resistant Semaphorin 3E isoform. EMBO Molecular Medicine, 2012, 4, 234-250.	3.3	82
42	Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. Journal of Clinical Investigation, 2012, 122, 1832-1848.	3.9	154
43	Abstract SY41-04: Targeting Semaphorin 3A: A new tool to normalize tumor vasculature and to overcome the evasive resistance to the anti-angiogenic therapy. , 2012, , .		0
44	A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers. European Journal of Cancer, 2011, 47, 479-490.	1.3	52
45	Increased Expression of $\hat{l}\pm 6$ Integrin in Endothelial Cells Unveils a Proangiogenic Role for Basement Membrane. Cancer Research, 2010, 70, 5759-5769.	0.4	60
46	Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. Journal of Clinical Investigation, 2009, 119, 3356-72.	3.9	167
47	Semaphorins and tumor angiogenesis. Angiogenesis, 2009, 12, 187-193.	3.7	46
48	Regulation of HMGCoA Reductase Activity by Policosanol and Octacosadienol, a New Synthetic Analogue of Octacosanol. Lipids, 2009, 44, 907-16.	0.7	56
49	APâ€2α and APâ€2γ regulate tumor progression via specific genetic programs. FASEB Journal, 2008, 22, 2702-2714.	0.2	69
50	Lymphatic Zip Codes in Premalignant Lesions and Tumors. Cancer Research, 2006, 66, 5696-5706.	0.4	67
51	CD4+ T Cell-Mediated Antigen-Specific Immunotherapy in a Mouse Model of Cervical Cancer. Cancer Research, 2005, 65, 2018-2025.	0.4	64
52	Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 2004, 5, 443-453.	7.7	582
53	An amino-bisphosphonate targets MMP-9–expressing macrophages and angiogenesis to impair cervical carcinogenesis. Journal of Clinical Investigation, 2004, 114, 623-633.	3.9	496
54	An amino-bisphosphonate targets MMP-9–expressing macrophages and angiogenesis to impair cervical carcinogenesis. Journal of Clinical Investigation, 2004, 114, 623-633.	3.9	333

#	Article	IF	CITATIONS
55	Modeling the early stages of vascular network assembly. EMBO Journal, 2003, 22, 1771-1779.	3.5	280
56	Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell, 2003, 4, 383-391.	7.7	210
57	Percolation, Morphogenesis, and Burgers Dynamics in Blood Vessels Formation. Physical Review Letters, 2003, 90, 118101.	2.9	222
58	Temporal and Spatial Modulation of Rho GTPases during in Vitro Formation of Capillary Vascular Network. Journal of Biological Chemistry, 2003, 278, 50702-50713.	1.6	64
59	Tumor-host interaction mediates the regression of BK virus-induced vascular tumors in mice: involvement of transforming growth factor-Â1. Carcinogenesis, 2003, 24, 1435-1444.	1.3	8
60	Tie-2–dependent activation of RhoA and Rac1 participates in endothelial cell motility triggered by angiopoietin-1. Blood, 2003, 102, 2482-2490.	0.6	57
61	Tat-induced platelet-activating factor synthesis contributes to the angiogenic effect of HIV-1 Tat. European Journal of Immunology, 2001, 31, 376-383.	1.6	23
62	Src-mediated activation of alpha-diacylglycerol kinase is required for hepatocyte growth factor-induced cell motility. EMBO Journal, 2000, 19, 4614-4622.	3.5	85
63	Tumor Necrosis Factor-α Regulates Expression of Vascular Endothelial Growth Factor Receptor-2 and of Its Co-receptor Neuropilin-1 in Human Vascular Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 22128-22135.	1.6	232
64	The angiogenesis induced by HIV–1 Tat protein is mediated by the Flk–1/KDR receptor on vascular endothelial cells. Nature Medicine, 1996, 2, 1371-1375.	15.2	363
65	In Vivo Activation of <i>met </i> Tyrosine Kinase by Heterodimeric Hepatocyte Growth Factor Molecule Promotes Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1857-1865.	1.1	89