Subrata Nandy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9157448/publications.pdf

Version: 2024-02-01

201385 233125 2,307 69 27 45 h-index citations g-index papers 69 69 69 1722 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatio-temporal variability of gross primary productivity in moist and dry deciduous plant functional types of Northwest Himalayan foothills of India using temperature-greenness model. Geocarto International, 2022, 37, 2055-2067.	1.7	6
2	Climate change water vulnerability and adaptation mechanism in a Himalayan City, Nainital, India. Environmental Science and Pollution Research, 2022, 29, 85904-85921.	2.7	8
3	Coupling Earth observation and eddy covariance data in light-use efficiency based model for estimation of forest productivity. Geocarto International, 2022, 37, 7716-7732.	1.7	4
4	Spatio-temporal variability of water use efficiency and its drivers in major forest formations in India. Remote Sensing of Environment, 2022, 269, 112791.	4.6	26
5	Measuring evapotranspiration by eddy covariance methodÂand understanding its biophysical controls in moist deciduous forest of northwest Himalayan foothillsÂof India. Tropical Ecology, 2022, 63, 387-397.	0.6	2
6	Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region. Remote Sensing Applications: Society and Environment, 2022, 25, 100695.	0.8	6
7	Mapping spatial variability of foliar nitrogen and carbon in Indian tropical moist deciduous sal (Shorea robusta) forest using machine learning algorithms and Sentinel-2 data. International Journal of Remote Sensing, 2021, 42, 1139-1159.	1.3	9
8	Seasonal dynamics and impact factors of atmospheric CO2 concentration over subtropical forest canopies: observation from eddy covariance tower and OCO-2 satellite in Northwest Himalaya, India. Environmental Monitoring and Assessment, 2021, 193, 106.	1.3	7
9	Monitoring and predicting regional land use and land cover changes in an estuarine landscape of India. Environmental Monitoring and Assessment, 2021, 193, 124.	1.3	14
10	Climate change vulnerability assessment of urban informal settlers in Nepal, a least developed country. Journal of Cleaner Production, 2021, 307, 127213.	4.6	33
11	Mapping Forest Height and Aboveground Biomass by Integrating ICESatâ€2, Sentinelâ€1 and Sentinelâ€2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India. Geophysical Research Letters, 2021, 48, e2021GL093799.	1.5	73
12	Shifting shoreline of the estuarine landscape in the East Godavari district of Andhra Pradesh, India. Environmental Earth Sciences, 2021, 80, 1.	1.3	2
13	Assessment of sal (Shorea robusta) forest phenology and its response to climatic variables in India. Environmental Monitoring and Assessment, 2021, 193, 616.	1.3	4
14	Assessing tree diversity and carbon storage during land use transitioning from shifting cultivation to indigenous agroforestry systems: Implications for REDD+ initiatives. Journal of Environmental Management, 2021, 298, 113470.	3.8	41
15	The role of information infrastructure for climate change adaptation in the socio-ecological system of the Central Himalaya: availability, utility, and gaps. Socio-Ecological Practice Research, 2021, 3, 397-410.	0.9	9
16	Mapping socio-environmental vulnerability to climate change in different altitude zones in the Indian Himalayas. Ecological Indicators, 2020, 109, 105787.	2.6	93
17	Climate change vulnerability and adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan. Ecological Indicators, 2020, 110, 105863.	2.6	65
18	Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India. Biogeochemistry, 2020, 151, 291-311.	1.7	16

#	Article	IF	CITATIONS
19	Mapping the effect of climate change on community livelihood vulnerability in the riparian region of Gangatic Plain, India. Ecological Indicators, 2020, 119, 106815.	2.6	58
20	Mountain specific multi-hazard risk management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate change risk in the Indian Himalayan Region. Ecological Indicators, 2020, 118 , 106700 .	2.6	56
21	Micro-level adaptation strategies by smallholders to adapt climate change in the least developed countries (LDCs): Insights from Afghanistan. Ecological Indicators, 2020, 118, 106781.	2.6	33
22	Habitat Suitability Analysis of Himalayan Musk Deer (Moschus leucogaster) in Part of Western Himalaya, India. Journal of the Indian Society of Remote Sensing, 2020, 48, 1523-1533.	1.2	5
23	High-Resolution Mapping of Forest Carbon Stock Using Object-Based Image Analysis (OBIA) Technique. Journal of the Indian Society of Remote Sensing, 2020, 48, 865-875.	1.2	2
24	Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine. International Journal of Remote Sensing, 2020, 41, 7296-7309.	1.3	28
25	Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecological Indicators, 2019, 106, 105512.	2.6	95
26	Integration of eddy covariance and process-based model for the intra-annual variability of carbon fluxes in an Indian tropical forest. Biodiversity and Conservation, 2019, 28, 2123-2141.	1.2	18
27	Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Ecological Informatics, 2019, 52, 94-102.	2.3	66
28	Fusing Airborne Laser Scanning and Rapideye Sensor Parameters for Tropical Forest Biomass Estimation of Nepal. , 2019, , .		2
29	Does spatial heterogeneity of landscape explain the process of plant invasion? A case study of Hyptis suaveolens from Indian Western Himalaya. Environmental Monitoring and Assessment, 2019, 191, 794.	1.3	21
30	Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation. Environmental Monitoring and Assessment, 2019, 191, 786.	1.3	8
31	Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environmental Monitoring and Assessment, 2019, 191, 802.	1.3	29
32	Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 2019, 50, 24-32.	2.3	93
33	Wildlife Habitat Evaluation in Mountainous Landscapes. , 2019, , 341-352.		1
34	CO2 Flux Tower and Remote Sensing: Tools for Monitoring Carbon Exchange over Ecosystem Scale in Northwest Himalaya., 2019,, 313-327.		3
35	Spatial patterns of plant functional types and environmental proxies of plant richness in alpine region of Western Himalaya, India. Biodiversity and Conservation, 2019, 28, 2221-2244.	1.2	6
36	Remote Sensing-Based Forest Biomass Assessment in Northwest Himalayan Landscape. , 2019, , 285-311.		17

3

#	Article	IF	Citations
37	Climate change vulnerability in urban slum communities: Investigating household adaptation and decision-making capacity in the Indian Himalaya. Ecological Indicators, 2018, 90, 379-391.	2.6	57
38	Trends of sea level in the Bay of Bengal using altimetry and other complementary techniques. Journal of Spatial Science, 2018, 63, 49-62.	1.0	9
39	Forest Cover Monitoring and Prediction in A Lesser Himalayan Elephant Landscape. Current Science, 2018, 115, 510.	0.4	14
40	The Multidimensional Livelihood Vulnerability Index – an instrument to measure livelihood vulnerability to change in the Hindu Kush Himalayas. Climate and Development, 2017, 9, 124-140.	2.2	116
41	Land Cover Classification Using ICESat/GLAS Full Waveform Data. Journal of the Indian Society of Remote Sensing, 2017, 45, 327-335.	1.2	6
42	Sustainable livelihood framework-based indicators for assessing climate change vulnerability and adaptation for Himalayan communities. Ecological Indicators, 2017, 79, 338-346.	2.6	186
43	Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms. Progress in Physical Geography, 2017, 41, 247-267.	1.4	36
44	Neural network-based modelling for forest biomass assessment. Carbon Management, 2017, 8, 305-317.	1.2	64
45	The Potential Applications of Satellite Altimetry with SARAL/AltiKa for Indian Inland Waters. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 661-677.	0.8	12
46	Random forest regression modelling for forest above ground biomass estimation using RISAT-1 PolSAR and terrestrial LiDAR data. Proceedings of SPIE, 2016, , .	0.8	5
47	A new method for SARAL/AltiKa waveform classification: contextual analysis over the Maithon Reservoir, Jharkhand, India. Proceedings of SPIE, 2016, , .	0.8	3
48	Empirical assessment of adaptation to climate change impacts of mountain households: development and application of an Adaptation Capability Index. Journal of Mountain Science, 2016, 13, 1503-1514.	0.8	41
49	SARAL/AltiKa Waveform Analysis to Monitor Inland Water Levels: A Case Study of Maithon Reservoir, Jharkhand, India. Marine Geodesy, 2015, 38, 597-613.	0.9	16
50	Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecological Indicators, 2015, 57, 182-195.	2.6	77
51	Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques. Environmental Monitoring and Assessment, 2015, 187, 308.	1.3	36
52	Assessing climate change vulnerability of water at household level. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1471-1485.	1.0	41
53	Estimating aboveground biomass in <i>Avicennia marina</i> plantation in Indian Sundarbans using high-resolution satellite data. Journal of Applied Remote Sensing, 2014, 8, 083638.	0.6	32
54	Resource Availability Versus Resource Extraction in Forests: Analysis of Forest Fodder System in Forest Density Classes in Lower Himalayas, India. Small-Scale Forestry, 2014, 13, 267-279.	0.7	14

#	Article	IF	CITATIONS
55	Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India. Environmental Monitoring and Assessment, 2014, 186, 5911-5920.	1.3	22
56	Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecological Indicators, 2014, 45, 444-455.	2.6	110
57	Comparing tree diversity and population structure between a traditional agroforestry system and natural forests of Barak valley, Northeast India. International Journal of Biodiversity Science, Ecosystem Services & Management, 2013, 9, 104-113.	2.9	20
58	Climate vulnerability index - measure of climate change vulnerability to communities: a case of rural Lower Himalaya, India. Mitigation and Adaptation Strategies for Global Change, 2012, 17, 487-506.	1.0	191
59	Identification of Swamp Deer (Cervus duvauceli duvauceli Cuvier) Potential Habitat in Jhilmil Jheel Conservation Reserve, Uttarakhand, India Using Multi-Criteria Analysis. Environmental Management, 2012, 49, 902-914.	1.2	10
60	Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. Biodiversity and Conservation, 2012, 21, 1215-1228.	1.2	45
61	Forest degradation assessment in the upper catchment of the river Tons using remote sensing and GIS. Ecological Indicators, 2011, 11, 509-513.	2.6	37
62	Forest biomass extraction for livestock feed and associated carbon analysis in lower Himalayas, India. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 879-888.	1.0	6
63	Study on the utility of IRS 1D LISS-III data and the classification techniques for mapping of Sunderban mangroves. Journal of Coastal Conservation, 2011, 15, 123-137.	0.7	47
64	Geospatial modelling of biological richness in Sunderbans. Journal of the Indian Society of Remote Sensing, 2010, 38, 431-440.	1.2	15
65	Monitoring the Chilla–Motichur wildlife corridor using geospatial tools. Journal for Nature Conservation, 2007, 15, 237-244.	0.8	37
66	Site suitability analysis for khair (ACACIA CATECHU) in part of doon valley using geoinformatics. Journal of the Indian Society of Remote Sensing, 2006, 34, 187-191.	1.2	1
67	Phenology and culm growth of Melocanna baccifera (Roxb.) Kurtz in Barak Valley, North-East India. Perspectives on Global Development and Technology, 2004, 3, 27-34.	0.2	13
68	Forest canopy density stratification using biophysical modeling. Journal of the Indian Society of Remote Sensing, 2003, 31, 291-297.	1.2	28
69	FOREST ECOSYSTEM DYNAMICS ASSESSMENT AND PREDICTIVE MODELLING IN EASTERN HIMALAYA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXVIII-8/W20, 155-161.	0.2	1