Shoko Hikosaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9157441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering, photosynthesis, growth, and fruit yield of everbearing strawberry. Plant Biotechnology, 2016, 33, 267-276.	1.0	49
2	Effects of Ultraviolet Light on Growth, Essential Oil Concentration, and Total Antioxidant Capacity of Japanese Mint. Environmental Control in Biology, 2010, 48, 185-190.	0.7	28
3	Response of Ammonia Assimilation in Cucumber Seedlings to Nitrate Stress. Journal of Plant Biology, 2010, 53, 173-179.	2.1	27
4	Effects of nutrient solution temperature on the concentration of major bioactive compounds in red perilla. J Agricultural Meteorology, 2018, 74, 71-78.	1.5	27
5	Effects of Exogenous Plant Growth Regulators on Yield, Fruit Growth, and Concentration of Endogenous Hormones in Gynoecious Parthenocarpic Cucumber (<i>Cucumis sativus</i> L.). Horticulture Journal, 2015, 84, 342-349.	0.8	16
6	Optimization of Photosynthetic Photon Flux Density and Light Quality for Increasing Radiation-Use Efficiency in Dwarf Tomato under LED Light at the Vegetative Growth Stage. Plants, 2022, 11, 121.	3.5	14
7	Effects of Light Period and Light Intensity on Essential Oil Composition of Japanese Mint Grown in a Closed Production System. Environmental Control in Biology, 2010, 48, 141-149.	0.7	13
8	Effects of Concentration and Temperature of Nutrient Solution on Growth and Camptothecin Accumulation of Ophiorrhiza pumila. Plants, 2020, 9, 793.	3.5	11
9	Effects of Supplemental Lighting on Growth and Medicinal Compounds of Japanese Honeysuckle (<1>Lonicera japonica 1 Thunb.). Environmental Control in Biology, 2017, 55, 71-76.	0.7	10
10	A Systems Analysis With "Simplified Source-Sink Model―Reveals Metabolic Reprogramming in a Pair of Source-to-Sink Organs During Early Fruit Development in Tomato by LED Light Treatments. Frontiers in Plant Science, 2018, 9, 1439.	3.6	9
11	Effects of Nocturnal UV-B Irradiation on Growth, Flowering, and Phytochemical Concentration in Leaves of Greenhouse-Grown Red Perilla. Plants, 2021, 10, 1252.	3.5	9
12	Effects of Light Quality on the Concentration of Human Adiponectin in Transgenic Everbearing Strawberry. Environmental Control in Biology, 2013, 51, 31-33.	0.7	8
13	Estimation of Lighting Energy Consumption Required for Red Leaf Lettuce Production under Different Blue/Red Ratios and Light Intensity Conditions in a Plant Factory with Artificial Lighting. Shokubutsu Kankyo Kogaku, 2017, 29, 60-67.	0.1	6
14	Development of an Automatic Irrigation Method Using an Image-Based Irrigation System for High-Quality Tomato Production. Agronomy, 2022, 12, 106.	3.0	6
15	Effects of Post-harvest Storage and Drying Temperatures on Four Medicinal Compounds in the Root of Chinese Licorice (Glycyrrhiza uralensis). Environmental Control in Biology, 2014, 51, 149-155.	0.7	5
16	Development of an Irrigation Method with a Cycle of Wilting–Partial Recovery Using an Image-Based Irrigation System for High-Quality Tomato Production. Agronomy, 2022, 12, 1410.	3.0	5
17	Effects of air temperature before harvest on the concentration of human adiponectin in transgenic strawberry fruits. Plant Biotechnology, 2019, 36, 21-27.	1.0	3
18	Effects of photosynthetic photon flux density and light period on growth and camptothecin accumulation of <i>Ophiorrhiza pumila</i> under controlled environments. J Agricultural Meteorology, 2020, 76, 180-187.	1.5	3

SHOKO HIKOSAKA

#	Article	IF	CITATIONS
19	Effects of Far-Red LED Light on the Growth and Development of Tomato Seedlings in a Closed Seedling Production System. Shokubutsu Kankyo Kogaku, 2015, 27, 61-67.	0.1	2
20	Time-course of Growth and Main Bioactive Compound Concentrations in Red Perilla under Low Nutrient Solution Temperature Treatment. Shokubutsu Kankyo Kogaku, 2018, 30, 115-122.	0.1	2
21	Effects of Photosynthetic Photon Flux Density and Red/Blue Light Ratio on the Leaf Shape and Concentrations of Functional and Aromatic Compounds in Sweet Basil (<i>Ocimum basilicum</i> L.). Horticulture Journal, 2021, 90, .	0.8	1
22	Optimal harvest-time to maximize the annual camptothecin production by Ophiorrhiza pumila in a plant factory with artificial light. Journal of Natural Medicines, 2022, 76, 865-872.	2.3	1
23	Production of High Value-added Plant by Controlling the Root-zone Environment. Shokubutsu Kankyo Kogaku, 2022, 34, 11-13.	0.1	0