Marco Pirazzini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9157373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacological Reviews, 2017, 69, 200-235.	7.1	506
2	Botulinum neurotoxins: genetic, structural and mechanistic insights. Nature Reviews Microbiology, 2014, 12, 535-549.	13.6	461
3	Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins, 2017, 9, 38.	1.5	232
4	Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins. Cell Reports, 2014, 8, 1870-1878.	2.9	90
5	On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 467-474.	1.4	82
6	Botulinum Neurotoxin Type A is Internalized and Translocated from Small Synaptic Vesicles at the Neuromuscular Junction. Molecular Neurobiology, 2013, 48, 120-127.	1.9	65
7	Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cellular Microbiology, 2011, 13, 1731-1743.	1.1	61
8	The thioredoxin reductaseâ€ŧhioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Letters, 2013, 587, 150-155.	1.3	55
9	Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins, 2018, 10, 190.	1.5	55
10	<scp>CXCL</scp> 12α/ <scp>SDF</scp> â€l from perisynaptic Schwann cells promotes regeneration of injured motor axonÂterminals. EMBO Molecular Medicine, 2017, 9, 1000-1010.	3.3	48
11	Skeletal muscle mTORC1 regulates neuromuscular junction stability. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 208-225.	2.9	43
12	Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opinion on Drug Discovery, 2017, 12, 497-510.	2.5	41
13	Postnatal Development and Distribution of Sympathetic Innervation in Mouse Skeletal Muscle. International Journal of Molecular Sciences, 2018, 19, 1935.	1.8	40
14	Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cellular Microbiology, 2017, 19, e12647.	1.1	39
15	Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C. Biosensors and Bioelectronics, 2021, 183, 113210.	5.3	39
16	Botulinum neurotoxin serotype D is poorly effective in humans: An in vivo electrophysiological study. Clinical Neurophysiology, 2013, 124, 999-1004.	0.7	37
17	Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Letters, 2013, 587, 3831-3836.	1.3	33
18	Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism. Biochemical Pharmacology, 2015, 98, 522-530.	2.0	33

Marco Pirazzini

#	Article	IF	CITATIONS
19	Re-Assembled Botulinum Neurotoxin Inhibits CNS Functions without Systemic Toxicity. Toxins, 2011, 3, 345-355.	1.5	31
20	Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. Biochemical and Biophysical Research Communications, 2013, 430, 38-42.	1.0	30
21	Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction. Toxins, 2015, 7, 5322-5336.	1.5	30
22	A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins. Scientific Reports, 2015, 5, 17513.	1.6	29
23	Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathogens, 2017, 13, e1006567.	2.1	27
24	Diphtheria toxin conformational switching at acidic pH. FEBS Journal, 2014, 281, 2115-2122.	2.2	26
25	The thioredoxin reductase – Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles. Toxicon, 2015, 107, 32-36.	0.8	26
26	Variability in venom composition of European viper subspecies limits the cross-effectiveness of antivenoms. Scientific Reports, 2018, 8, 9818.	1.6	25
27	Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon, 2018, 147, 32-37.	0.8	24
28	Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Archives of Toxicology, 2022, 96, 1521-1539.	1.9	22
29	Tetanus and tetanus neurotoxin: From peripheral uptake to central nervous tissue targets. Journal of Neurochemistry, 2021, 158, 1244-1253.	2.1	21
30	Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells, 2020, 9, 325.	1.8	21
31	The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cellular Microbiology, 2019, 21, e13037.	1.1	17
32	An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells, 2019, 8, 1183.	1.8	16
33	Current gaps in basic science knowledge of botulinum neurotoxin biological actions. Toxicon, 2015, 107, 59-63.	0.8	15
34	A CXCR4 receptor agonist strongly stimulates axonal regeneration after damage. Annals of Clinical and Translational Neurology, 2019, 6, 2395-2402.	1.7	15
35	Electrophysiological Recordings of Evoked End-Plate Potential on Murine Neuro-muscular Synapse Preparations. Bio-protocol, 2018, 8, e2803.	0.2	10
36	Models and methods to study Schwann cells. Journal of Anatomy, 2022, 241, 1235-1258.	0.9	10

Marco Pirazzini

#	Article	IF	CITATIONS
37	High Conservation of Tetanus and Botulinum Neurotoxins Cleavage Sites on Human SNARE Proteins Suggests That These Pathogens Exerted Little or No Evolutionary Pressure on Humans. Toxins, 2017, 9, 404.	1.5	9
38	Ablation of S1P ₃ receptor protects mouse soleus from age-related drop in muscle mass, force, and regenerative capacity. American Journal of Physiology - Cell Physiology, 2017, 313, C54-C67.	2.1	8
39	Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	8
40	Preparation of Cerebellum Granule Neurons from Mouse or Rat Pups and Evaluation of Clostridial Neurotoxin Activity and Their Inhibitors by Western Blot and Immunohistochemistry. Bio-protocol, 2018, 8, e2918.	0.2	7
41	pH-sensitive PEG-based micelles for tumor targeting. Journal of Drug Targeting, 2011, 19, 303-313.	2.1	6
42	Detection of VAMP Proteolysis by Tetanus and Botulinum Neurotoxin Type B In Vivo with a Cleavage-Specific Antibody. International Journal of Molecular Sciences, 2022, 23, 4355.	1.8	6
43	Detection of Clostridium tetani Neurotoxins Inhibited In Vivo by Botulinum Antitoxin B: Potential for Misleading Mouse Test Results in Food Controls. Toxins, 2018, 10, 248.	1.5	4
44	Primary resistance of human patients to botulinum neurotoxins A and B. Annals of Clinical and Translational Neurology, 2018, 5, 971-975.	1.7	4
45	Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Bio-protocol, 2018, 8, e2759.	0.2	4
46	Novel Small Molecule Inhibitors That Prevent the Neuroparalysis of Tetanus Neurotoxin. Pharmaceuticals, 2021, 14, 1134.	1.7	3
47	Latrotoxin-Induced Neuromuscular Junction Degeneration Reveals Urocortin 2 as a Critical Contributor to Motor Axon Terminal Regeneration. International Journal of Molecular Sciences, 2022, 23, 1186.	1.8	1
48	Molecular Structure and Mechanisms of Action of Botulinum Neurotoxins. , 2020, , 15-26.		0
49	Genome Sequence of the Fish Brain Bacterium Clostridium tarantellae. Microbiology Resource Announcements, 2020, 9, .	0.3	0