Guido Reina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9157341/publications.pdf

Version: 2024-02-01

933447 794594 29 387 10 19 citations h-index g-index papers 30 30 30 406 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	Probabilistic Occlusion Culling using Confidence Maps for High-Quality Rendering of Large Particle Data. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 573-582.	4.4	5
2	Visualization for Architecture, Engineering, and Construction: Shaping the Future of Our Built World. IEEE Computer Graphics and Applications, 2022, 42, 10-20.	1.2	9
3	Situated Visual Analysis and Live Monitoring for Manufacturing. IEEE Computer Graphics and Applications, 2022, 42, 33-44.	1.2	7
4	Multi-class inverted stippling. ACM Transactions on Graphics, 2021, 40, 1-12.	7.2	6
5	2019 IEEE Scientific Visualization Contest Winner: Visual Analysis of Structure Formation in Cosmic Evolution. IEEE Computer Graphics and Applications, 2020, 41, 1-1.	1.2	O
6	The moving target of visualization software for an increasingly complex world. Computers and Graphics, 2020, 87, 12-29.	2.5	11
7	An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 2020, 9, 295.	1.6	21
8	Evaluation of Gaze Depth Estimation from Eye Tracking in Augmented Reality. , 2020, , .		5
9	An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 2020, 9, 295.	1.6	16
10	Eye vs.ÂHead: Comparing Gaze Methods for Interaction in Augmented Reality. , 2020, , .		7
11	Spatial Partitioning Strategies for Memory-Efficient Ray Tracing of Particles. , 2020, , .		3
12	MegaMol – a comprehensive prototyping framework for visualizations. European Physical Journal: Special Topics, 2019, 227, 1817-1829.	2.6	18
13	A decade of particle-based scientific visualization. European Physical Journal: Special Topics, 2019, 227, 1705-1723.	2.6	1
14	Visual Analysis of Structure Formation in Cosmic Evolution., 2019,,.		3
15	10 Years of MegaMol: The Pain and Gain of Creating Your Own Visualization Framework. IEEE Computer Graphics and Applications, 2018, 38, 109-114.	1.2	2
16	Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 944-953.	4.4	4
17	Immersive Modular Factory Layout Planning using Augmented Reality. Procedia CIRP, 2018, 72, 1112-1117.	1.9	22
18	2016 IEEE Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles. IEEE Computer Graphics and Applications, 2018, 38, 106-117.	1.2	6

#	Article	lF	CITATION
19	Interactive GPU-based Visualization of Large Dynamic Particle Data. Synthesis Lectures on Visualization, 2016, 4, 1-121.	0.1	8
20	VoxLinkâ€"Combining sparse volumetric data and geometry for efficient rendering. Computational Visual Media, 2016, 2, 45-56.	17.5	6
21	MegaMolâ€"A Prototyping Framework for Particle-Based Visualization. IEEE Transactions on Visualization and Computer Graphics, 2015, 21, 201-214.	4.4	83
22	Visual analysis for space–time aggregation of biomolecular simulations. Faraday Discussions, 2014, 169, 167-178.	3.2	6
23	Application-specific compression of large MD data preserving physical characteristics. , 2013, , .		2
24	Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides. IEEE Transactions on Visualization and Computer Graphics, 2012, 18, 2061-2068.	4.4	14
25	Evaluation of per-pixel linked lists for distributed rendering and comparative analysis. Computing and Visualization in Science, 2012, 15, 111-121.	1.2	5
26	Coherent Culling and Shading for Large Molecular Dynamics Visualization. Computer Graphics Forum, 2010, 29, 953-962.	3.0	43
27	Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics. Journal of Chemical Physics, 2008, 128, 164510.	3.0	30
28	Visual Verification and Analysis of Cluster Detection for Molecular Dynamics. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 1624-1631.	4.4	25
29	Visual Analysis of Twoâ€Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, 0, , .	3.0	3