Guido Reina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9157341/publications.pdf Version: 2024-02-01

CUIDO REINA

#	Article	IF	CITATIONS
1	MegaMol—A Prototyping Framework for Particle-Based Visualization. IEEE Transactions on Visualization and Computer Graphics, 2015, 21, 201-214.	4.4	83
2	Coherent Culling and Shading for Large Molecular Dynamics Visualization. Computer Graphics Forum, 2010, 29, 953-962.	3.0	43
3	Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics. Journal of Chemical Physics, 2008, 128, 164510.	3.0	30
4	Visual Verification and Analysis of Cluster Detection for Molecular Dynamics. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 1624-1631.	4.4	25
5	Immersive Modular Factory Layout Planning using Augmented Reality. Procedia CIRP, 2018, 72, 1112-1117.	1.9	22
6	An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 2020, 9, 295.	1.6	21
7	MegaMol – a comprehensive prototyping framework for visualizations. European Physical Journal: Special Topics, 2019, 227, 1817-1829.	2.6	18
8	An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 2020, 9, 295.	1.6	16
9	Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides. IEEE Transactions on Visualization and Computer Graphics, 2012, 18, 2061-2068.	4.4	14
10	The moving target of visualization software for an increasingly complex world. Computers and Graphics, 2020, 87, 12-29.	2.5	11
11	Visualization for Architecture, Engineering, and Construction: Shaping the Future of Our Built World. IEEE Computer Graphics and Applications, 2022, 42, 10-20.	1.2	9
12	Interactive GPU-based Visualization of Large Dynamic Particle Data. Synthesis Lectures on Visualization, 2016, 4, 1-121.	0.1	8
13	Eye vs.ÂHead: Comparing Gaze Methods for Interaction in Augmented Reality. , 2020, , .		7
14	Situated Visual Analysis and Live Monitoring for Manufacturing. IEEE Computer Graphics and Applications, 2022, 42, 33-44.	1.2	7
15	Visual analysis for space–time aggregation of biomolecular simulations. Faraday Discussions, 2014, 169, 167-178.	3.2	6
16	VoxLink—Combining sparse volumetric data and geometry for efficient rendering. Computational Visual Media, 2016, 2, 45-56.	17.5	6
17	2016 IEEE Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles. IEEE Computer Graphics and Applications, 2018, 38, 106-117.	1.2	6
18	Multi-class inverted stippling. ACM Transactions on Graphics, 2021, 40, 1-12.	7.2	6

Guido Reina

#	Article	IF	CITATIONS
19	Evaluation of per-pixel linked lists for distributed rendering and comparative analysis. Computing and Visualization in Science, 2012, 15, 111-121.	1.2	5
20	Probabilistic Occlusion Culling using Confidence Maps for High-Quality Rendering of Large Particle Data. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 573-582.	4.4	5
21	Evaluation of Gaze Depth Estimation from Eye Tracking in Augmented Reality. , 2020, , .		5
22	Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 944-953.	4.4	4
23	Visual Analysis of Structure Formation in Cosmic Evolution. , 2019, , .		3
24	Spatial Partitioning Strategies for Memory-Efficient Ray Tracing of Particles. , 2020, , .		3
25	Visual Analysis of Twoâ€Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, 0, , .	3.0	3
26	Application-specific compression of large MD data preserving physical characteristics. , 2013, , .		2
27	10 Years of MegaMol: The Pain and Gain of Creating Your Own Visualization Framework. IEEE Computer Graphics and Applications, 2018, 38, 109-114.	1.2	2
28	A decade of particle-based scientific visualization. European Physical Journal: Special Topics, 2019, 227, 1705-1723.	2.6	1
29	2019 IEEE Scientific Visualization Contest Winner: Visual Analysis of Structure Formation in Cosmic Evolution. IEEE Computer Graphics and Applications, 2020, 41, 1-1.	1.2	0