Andreas Lendlein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156993/publications.pdf

Version: 2024-02-01

646 papers 27,199 citations

70 h-index 150 g-index

678 all docs

678 docs citations

times ranked

678

17934 citing authors

#	Article	IF	CITATIONS
1	Shape-Memory Polymers. Angewandte Chemie - International Edition, 2002, 41, 2034.	7.2	2,287
2	Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science, 2002, 296, 1673-1676.	6.0	1,971
3	Light-induced shape-memory polymers. Nature, 2005, 434, 879-882.	13.7	1,808
4	Shape-memory polymers. Materials Today, 2007, 10, 20-28.	8.3	1,078
5	Multifunctional Shapeâ€Memory Polymers. Advanced Materials, 2010, 22, 3388-3410.	11.1	835
6	Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3540-3545.	3.3	735
7	Protein Interactions with Polymer Coatings and Biomaterials. Angewandte Chemie - International Edition, 2014, 53, 8004-8031.	7.2	614
8	Polymers Move in Response to Light. Advanced Materials, 2006, 18, 1471-1475.	11.1	565
9	Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nature Reviews Materials, 2019, 4, 116-133.	23.3	450
10	Polymeric triple-shape materials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18043-18047.	3.3	440
11	Bcl-2 Engineered MSCs Inhibited Apoptosis and Improved Heart Function. Stem Cells, 2007, 25, 2118-2127.	1.4	410
12	Reversible Bidirectional Shapeâ€Memory Polymers. Advanced Materials, 2013, 25, 4466-4469.	11.1	410
13	Shape-memory polymers as a technology platform for biomedical applications. Expert Review of Medical Devices, 2010, 7, 357-379.	1.4	382
14	Actively moving polymers. Soft Matter, 2007, 3, 58-67.	1.2	300
15	Temperature-memory polymer actuators. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12555-12559.	3.3	273
16	Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks. Accounts of Chemical Research, 2017, 50, 723-732.	7.6	245
17	Biodegradable, Amorphous Copolyester-Urethane Networks Having Shape-Memory Properties. Angewandte Chemie - International Edition, 2005, 44, 1188-1192.	7.2	226
18	Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. Journal of Controlled Release, 2009, 138, 243-250.	4.8	215

#	Article	IF	CITATIONS
19	Shape-memory polymer networks from oligo(?-caprolactone)dimethacrylates. Journal of Polymer Science Part A, 2005, 43, 1369-1381.	2.5	206
20	Design and preparation of polymeric scaffolds for tissue engineering. Expert Review of Medical Devices, 2006, 3, 835-851.	1.4	200
21	Reversible Tripleâ€Shape Effect of Polymer Networks Containing Polypentadecalactone―and Poly(εâ€caprolactone)â€Segments. Advanced Materials, 2010, 22, 3424-3429.	11.1	197
22	Triple-shape polymers. Journal of Materials Chemistry, 2010, 20, 3335.	6.7	186
23	Polymer Networks Combining Controlled Drug Release, Biodegradation, and Shape Memory Capability. Advanced Materials, 2009, 21, 3394-3398.	11.1	163
24	Oneâ€Step Process for Creating Tripleâ€Shape Capability of AB Polymer Networks. Advanced Functional Materials, 2009, 19, 102-108.	7.8	159
25	The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer, 2013, 54, 4333-4350.	1.8	154
26	Shape memory nanocomposite fibers for untethered high-energy microengines. Science, 2019, 365, 155-158.	6.0	151
27	Shape-memory polymers. Angewandte Chemie - International Edition, 2002, 41, 2035-57.	7.2	149
28	Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. Journal of Materials Chemistry, 2010, 20, 3404.	6.7	139
29	Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. Journal of Materials Chemistry, 2007, 17, 2885.	6.7	137
30	Temperatureâ€Memory Polymer Networks with Crystallizable Controlling Units. Advanced Materials, 2011, 23, 4058-4062.	11.1	136
31	Knowledgeâ€Based Approach towards Hydrolytic Degradation of Polymerâ€Based Biomaterials. Advanced Materials, 2009, 21, 3237-3245.	11.1	134
32	Temperatureâ€Memory Effect of Copolyesterurethanes and their Application Potential in Minimally Invasive Medical Technologies. Advanced Functional Materials, 2012, 22, 3057-3065.	7.8	132
33	Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter, 2013, 9, 1744-1755.	1.2	125
34	Shape-Memory Polymer Networks from Oligo [($\hat{l}\mu$ -hydroxycaproate)-co-glycolate]dimethacrylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate. Biomacromolecules, 2007, 8, 1018-1027.	2.6	121
35	Stimuli‧ensitive Polymers. Advanced Materials, 2010, 22, 3344-3347.	11.1	120
36	Melt-Processable Shape-Memory Hydrogels with Self-Healing Ability of High Mechanical Strength. Macromolecules, 2016, 49, 7442-7449.	2.2	120

3

#	Article	IF	Citations
37	Copolymer Networks Based on Poly(<i>i'>i'>â€pentadecalactone) and Poly(<i'i+ +< i="">i'>â€caprolactone)Segments as a Versatile Tripleâ€Shape Polymer System. Advanced Functional Materials, 2010, 20, 3583-3594.</i'i+ +<></i>	7.8	119
38	Degradable, Multifunctional Cardiovascular Implants: Challenges and Hurdles. MRS Bulletin, 2010, 35, 607-613.	1.7	116
39	Nanocarriers for drug delivery into and through the skin $\hat{a} \in \mathbb{C}^n$ Do existing technologies match clinical challenges?. Journal of Controlled Release, 2016, 242, 3-15.	4.8	116
40	Controlling the Switching Temperature of Biodegradable, Amorphous, Shape-Memory Poly(<i>rac</i> -lactide)urethane Networks by Incorporation of Different Comonomers. Biomacromolecules, 2009, 10, 975-982.	2.6	113
41	Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter, 2009, 5, 676-684.	1.2	110
42	Biodegradable Multiblock Copolymers Based on Oligodepsipeptides with Shapeâ€Memory Properties. Macromolecular Bioscience, 2009, 9, 45-54.	2.1	108
43	Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter, 2007, 3, 901.	1.2	104
44	AB-polymer networks based on oligo(varepsilon -caprolactone) segments showing shape-memory properties. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 842-847.	3.3	100
45	One Step Creation of Multifunctional 3D Architectured Hydrogels Inducing Bone Regeneration. Advanced Materials, 2015, 27, 1738-1744.	11.1	100
46	Magnetic Memory Effect of Nanocomposites. Advanced Functional Materials, 2012, 22, 184-191.	7.8	98
47	Gelatin-based Hydrogel Degradation and Tissue Interaction <i>in vivo</i> : Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice. Theranostics, 2016, 6, 2114-2128.	4.6	96
48	Investigation of parameters to achieve temperatures required to initiate the shape-memory effect of magnetic nanocomposites by inductive heating. Smart Materials and Structures, 2009, 18, 025011.	1.8	95
49	An entropy–elastic gelatin-based hydrogel system. Journal of Materials Chemistry, 2010, 20, 8875.	6.7	94
50	Stretched Poly(acrylonitrile) as a Scalable Alignment Medium for DMSO. Journal of the American Chemical Society, 2007, 129, 6080-6081.	6.6	92
51	Recent Trends in the Chemistry of Shapeâ€Memory Polymers. Macromolecular Chemistry and Physics, 2013, 214, 527-536.	1.1	92
52	Biocompatibility and inflammatory response inÂvitro and inÂvivo to gelatin-based biomaterials with tailorable elastic properties. Biomaterials, 2014, 35, 9755-9766.	5.7	89
53	Shape-Memory Polymers as Drug Carriersâ€"A Multifunctional System. Pharmaceutical Research, 2010, 27, 527-529.	1.7	88
54	Characterization Methods for Shape-Memory Polymers. Advances in Polymer Science, 2009, , 97-145.	0.4	87

#	Article	IF	CITATIONS
55	Tissue-compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties. Macromolecular Chemistry and Physics, 1998, 199, 2785-2796.	1.1	86
56	A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. International Journal of Pharmaceutics, 2013, 444, 96-102.	2.6	86
57	Multifunctional Hybrid Nanocomposites with Magnetically Controlled Reversible Shape–Memory Effect. Advanced Materials, 2013, 25, 5730-5733.	11.1	83
58	From Advanced Biomedical Coatings to Multiâ€Functionalized Biomaterials. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 347-375.	2.2	82
59	Selective enzymatic degradation of poly(ε-caprolactone) containing multiblock copolymers. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 46-56.	2.0	82
60	Materials in Regenerative Medicine. Advanced Materials, 2009, 21, 3231-3234.	11.1	82
61	Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research. Multifunctional Materials, 2018, 1, 010201.	2.4	82
62	Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes. Polymer, 2009, 50, 5490-5498.	1.8	81
63	Synthesis, Shape-Memory Functionality and Hydrolytical Degradation Studies on Polymer Networks from Poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Advanced Engineering Materials, 2006, 8, 439-445.	1.6	80
64	Haemocompatibility testing of biomaterials using human platelets. Clinical Hemorheology and Microcirculation, 2013, 53, 97-115.	0.9	79
65	Shape-Memory Polymer Composites. Advances in Polymer Science, 2009, , 41-95.	0.4	78
66	Fabrication of reprogrammable shape-memory polymer actuators for robotics. Science Robotics, 2018, 3, .	9.9	78
67	Shape-Memory Polymers and Shape-Changing Polymers. Advances in Polymer Science, 2009, , 1-40.	0.4	77
68	Recent advances in degradable lactide-based shape-memory polymers. Advanced Drug Delivery Reviews, 2016, 107, 136-152.	6.6	77
69	FormgedÃ ¤ htnispolymere. Angewandte Chemie, 2002, 114, 2138.	1.6	76
70	Quantifying the Shape-Memory Effect of Polymers by Cyclic Thermomechanical Tests. Polymer Reviews, 2013, 53, 6-40.	5.3	76
71	Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. Journal of Cellular and Molecular Medicine, 2011, 15, 1310-1318.	1.6	72
72	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69

#	Article	IF	Citations
73	Progress in Depsipeptideâ€Based Biomaterials. Macromolecular Bioscience, 2010, 10, 1008-1021.	2.1	68
74	Shapeâ€Memory Nanocomposites with Magnetically Adjustable Apparent Switching Temperatures. Advanced Materials, 2011, 23, 4157-4162.	11.1	67
75	Copolymer Networks From Oligo(<i>ε</i> -caprolactone) and <i>n</i> -Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature. Macromolecular Rapid Communications, 2015, 36, 880-884.	2.0	67
76	Hydroxy-telechelic copolyesters with well defined sequence structure through ring-opening polymerization. Macromolecular Chemistry and Physics, 2000, 201, 1067-1076.	1.1	66
77	Enhanced thoracic gene delivery by magnetic nanobeadâ€mediated vector. Journal of Gene Medicine, 2008, 10, 897-909.	1.4	66
78	Preparation and biological evaluation of multifunctional PLGA-nanoparticles designed for photoacoustic imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 228-237.	1.7	66
79	Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials. Biomacromolecules, 2019, 20, 3627-3640.	2.6	66
80	Relaxation based modeling of tunable shape recovery kinetics observed under isothermal conditions for amorphous shape-memory polymers. Polymer, 2010, 51, 6212-6218.	1.8	64
81	In vitro cytotoxicity testing of AB-polymer networks based on oligo(?-caprolactone) segments after different sterilization techniques. Journal of Biomedical Materials Research Part B, 2003, 67B, 722-731.	3.0	63
82	Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview. European Archives of Oto-Rhino-Laryngology, 2006, 263, 215-222.	0.8	63
83	Amorphous, Elastic AB Copolymer Networks from Acrylates and Poly[(<scp>L</scp> â€actide)â€ <i>ran</i> â€glycolide]dimethacrylates. Advanced Engineering Materials, 2008, 10, 494-502.	1.6	63
84	Progress in actively moving polymers. Journal of Materials Chemistry, 2010, 20, 3332.	6.7	63
85	Mechanically active scaffolds from radioâ€opaque shapeâ€memory polymerâ€based composites. Polymers for Advanced Technologies, 2011, 22, 180-189.	1.6	62
86	Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomaterialia, 2011, 7, 1693-1701.	4.1	60
87	Design principles for polymers as substratum for adherent cells. Journal of Materials Chemistry, 2010, 20, 8789.	6.7	59
88	Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. Journal of Cellular and Molecular Medicine, 2011, 15, 1989-1998.	1.6	59
89	Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. EXPRESS Polymer Letters, 2012, 6, 26-40.	1.1	58
90	Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials, 2017, 113, 158-169.	5.7	58

#	Article	IF	Citations
91	Biodegradable Shape-Memory Polymer Networks:Â Characterization with Solid-State NMR. Macromolecules, 2005, 38, 3793-3799.	2.2	57
92	Formation and size distribution of pores in poly(É)-caprolactone) foams prepared by pressure quenching using supercritical CO2. Journal of Supercritical Fluids, 2012, 61, 175-190.	1.6	57
93	Shapeâ€Memory Effect of Microâ€Nanoparticles from Thermoplastic Multiblock Copolymers. Small, 2014, 10, 83-87.	5.2	57
94	An annulus fibrosus closure device based on a biodegradable shape-memory polymer network. Biomaterials, 2013, 34, 8105-8113.	5.7	56
95	Efficient synthesis of pure monotosylated beta-cyclodextrin and its dimers. Carbohydrate Research, 2013, 381, 59-63.	1.1	56
96	Hydrolytic Degradation of Phase-Segregated Multiblock Copoly(ester urethane)s Containing Weak Links. Macromolecular Chemistry and Physics, 2001, 202, 2702-2711.	1.1	55
97	Multicomponent protein patterning of material surfaces. Journal of Materials Chemistry, 2010, 20, 7322.	6.7	55
98	Layer-by-Layer Deposition of Polyelectrolytes—A Versatile Tool for the In Vivo Repair of Blood Vessels. Angewandte Chemie - International Edition, 2004, 43, 926-928.	7.2	54
99	In Vitro Thrombogenicity Testing of Biomaterials. Advanced Healthcare Materials, 2019, 8, e1900527.	3.9	54
100	Controlled Change of Mechanical Properties during Hydrolytic Degradation of Polyester Urethane Networks. Macromolecular Chemistry and Physics, 2010, 211, 182-194.	1.1	52
101	Two stages in three-dimensional <i>in vitro</i> growth of tissue generated by osteoblastlike cells. Biointerphases, 2010, 5, 45-52.	0.6	52
102	Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomaterialia, 2018, 69, 83-94.	4.1	52
103	Shape-memory properties of electrospun non-woven fabrics prepared from degradable polyesterurethanes containing poly(l‰-pentadecalactone) hard segments. European Polymer Journal, 2012, 48, 1866-1874.	2.6	51
104	Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo (i%-pentadecalactone) and covalently integrated magnetite nanoparticles. Polymer, 2014, 55, 5953-5960.	1.8	51
105	Adjusting shape-memory properties of amorphous polyether urethanes and radio-opaque composites thereof by variation of physical parameters during programming. Smart Materials and Structures, 2010, 19, 065019.	1.8	49
106	Memory-effects of magnetic nanocomposites. Nanoscale, 2012, 4, 6181.	2.8	49
107	Influence of Tyrosine-Derived Moieties and Drying Conditions on the Formation of Helices in Gelatin. Biomacromolecules, 2011, 12, 75-81.	2.6	48
108	Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. Journal of Materials Science: Materials in Medicine, 2013, 24, 61-70.	1.7	48

#	Article	IF	CITATIONS
109	Thermally induced shapeâ€memory effects in polymers: Quantification and related modeling approaches. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 621-637.	2.4	48
110	Determination of water/polymer interaction parameter for membrane-forming systems by sorption measurement and a fitting technique. Journal of Membrane Science, 2005, 265, 1-12.	4.1	47
111	Degradable, Multifunctional Polymeric Biomaterials with Shape-Memory. Materials Science Forum, 2005, 492-493, 219-224.	0.3	47
112	Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. Journal of Controlled Release, 2016, 242, 71-79.	4.8	47
113	Poly(ether imide) Membranes Modified with Poly(ethylene imine) as Potential Carriers for Epidermal Substitutes. Macromolecular Bioscience, 2006, 6, 274-284.	2.1	46
114	Reprogrammable, magnetically controlled polymeric nanocomposite actuators. Materials Horizons, 2018, 5, 861-867.	6.4	46
115	Hydrolytic degradation of poly(rac-lactide) and poly[(rac-lactide)-co-glycolide] at the air–water interface. Surface and Interface Analysis, 2007, 39, 740-746.	0.8	44
116	Controlled Drug Release from Biodegradable Shape-Memory Polymers. Advances in Polymer Science, 2009, , 177-205.	0.4	44
117	Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding. Journal of Biotechnology, 2010, 148, 76-82.	1.9	44
118	Viability of Human Mesenchymal Stem Cells Seeded on Crosslinked Entropyâ€Elastic Gelatinâ€Based Hydrogels. Macromolecular Bioscience, 2012, 12, 312-321.	2.1	44
119	Shape-Memory Properties and Degradation Behavior of Multifunctional Electro-Spun Scaffolds. International Journal of Artificial Organs, 2011, 34, 225-230.	0.7	42
120	Thermally-Induced Triple-Shape Hydrogels: Soft Materials Enabling Complex Movements. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28068-28076.	4.0	42
121	Progress in biopolymer-based biomaterials and their application in controlled drug delivery. Expert Review of Medical Devices, 2013, 10, 813-833.	1.4	41
122	Controlling Major Cellular Processes of Human Mesenchymal Stem Cells using Microwell Structures. Advanced Healthcare Materials, 2014, 3, 1991-2003.	3.9	41
123	Nanoparticles Complexed with Gene Vectors to Promote Proliferation of Human Vascular Endothelial Cells. Advanced Healthcare Materials, 2015, 4, 1225-1235.	3.9	41
124	Shape-Memory Polymers and Shape-Changing Polymers. Advances in Polymer Science, 2009, , 1-40.	0.4	41
125	Enzymatic Chain Scission Kinetics of Poly(Îμ-caprolactone) Monolayers. Langmuir, 2007, 23, 12202-12207.	1.6	40
126	Comparing techniques for drug loading of shape-memory polymer networks – effect on their functionalities. European Journal of Pharmaceutical Sciences, 2010, 41, 136-147.	1.9	39

#	Article	IF	Citations
127	Knowledgeâ€Based Tailoring of Gelatinâ€Based Materials by Functionalization with Tyrosineâ€Derived Groups. Macromolecular Rapid Communications, 2010, 31, 1534-1539.	2.0	39
128	Surface Functionalization of Poly(ether imide) Membranes with Linear, Methylated Oligoglycerols for Reducing Thrombogenicity. Macromolecular Rapid Communications, 2012, 33, 1487-1492.	2.0	39
129	Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility. Journal of Biomedical Materials Research - Part A, 2008, 86A, 209-219.	2.1	38
130	Functionalization of Polycarbonate Surfaces by Grafting <scp>PEG</scp> and Zwitterionic Polymers with a Multicomb Structure. Macromolecular Bioscience, 2013, 13, 1681-1688.	2.1	38
131	Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 210-217.	1.6	38
132	Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Clinical Hemorheology and Microcirculation, 2012, 52, 325-336.	0.9	37
133	Photocrosslinked Coâ€Networks from Glycidylmethacrylated Gelatin and Poly(ethylene glycol) Methacrylates. Macromolecular Bioscience, 2012, 12, 484-493.	2.1	37
134	Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 2022, 5, 032001.	2.4	37
135	Preparation of highly asymmetric hollow fiber membranes from poly(ether imide) by a modified dry–wet phase inversion technique using a triple spinneret. Journal of Membrane Science, 2005, 262, 69-80.	4.1	35
136	Shapeâ€Memory Effect in Polymers. Macromolecular Chemistry and Physics, 2013, 214, 1175-1177.	1.1	35
137	Influence of the addition of water to amorphous switching domains on the simulated shape-memory properties of poly(l-lactide). Polymer, 2013, 54, 4204-4211.	1.8	35
138	Cactus-inspired design principles for soft robotics based on 3D printed hydrogel-elastomer systems. Materials and Design, 2021, 202, 109515.	3.3	35
139	Shape-Memory Polymers for Biomedical Applications. Advances in Science and Technology, 2008, 54, 96-102.	0.2	34
140	Selfâ€Assembly of Polyethylenimineâ€Modified Biodegradable Complex Micelles as Gene Transfer Vector for Proliferation of Endothelial Cells. Macromolecular Chemistry and Physics, 2014, 215, 2463-2472.	1.1	34
141	Fundamental insights in PLGA degradation from thin film studies. Journal of Controlled Release, 2020, 319, 276-284.	4.8	34
142	Synthesis and characterization of \hat{l}_{\pm} , \hat{l}_{∞} -dihydroxy-telechelic oligo(p-dioxanone). Journal of Materials Chemistry, 2007, 17, 4050.	6.7	33
143	Formation of poly(ε-caprolactone) scaffolds loaded with small molecules by integrated processes. Journal of Biomechanics, 2007, 40, S80-S88.	0.9	33
144	ABâ€polymer Networks with Cooligoester and Poly(<i>n</i> à€butyl acrylate) Segments as a Multifunctional Matrix for Controlled Drug Release. Macromolecular Bioscience, 2010, 10, 1063-1072.	2.1	33

#	Article	IF	CITATIONS
145	Genetic engineering of mesenchymal stem cells by non-viral gene delivery. Clinical Hemorheology and Microcirculation, 2014, 58, 19-48.	0.9	33
146	Platelets and coronary artery disease: Interactions with the blood vessel wall and cardiovascular devices. Biointerphases, 2016 , 11 , 029702 .	0.6	33
147	mRNA Transfection-Induced Activation of Primary Human Monocytes and Macrophages: Dependence on Carrier System and Nucleotide Modification. Scientific Reports, 2020, 10, 4181.	1.6	33
148	Hyaluronic Acid-Based Hydrogels Crosslinked by Copper-Catalyzed Azide-Alkyne Cycloaddition with Tailorable Mechanical Properties. International Journal of Artificial Organs, 2011, 34, 192-197.	0.7	32
149	Demonstrating the Influence of Water on Shape-Memory Polymer Networks Based on Poly[(Rac-Lactide)-Co-Glycolide] Segments in Vitro. International Journal of Artificial Organs, 2011, 34, 172-179.	0.7	31
150	Shapeâ€Memory Hydrogels with Switching Segments Based on Oligo(<i>ω</i> â€pentadecalactone). Macromolecular Materials and Engineering, 2012, 297, 1184-1192.	1.7	31
151	Poly(ethylene glycol) Grafting to Poly(ether imide) Membranes: Influence on Protein Adsorption and Thrombocyte Adhesion. Macromolecular Bioscience, 2013, 13, 1720-1729.	2.1	31
152	Changes in platelet morphology and function during 24 hours of storage. Clinical Hemorheology and Microcirculation, 2014, 58, 159-170.	0.9	31
153	Biofunction of Polydopamine Coating in Stem Cell Culture. ACS Applied Materials & Distribution (1978) 13, 10748-10759.	4.0	31
154	Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels. Frontiers of Chemical Science and Engineering, 2011 , 5 , $392-400$.	2.3	30
155	Shape-Memory Polymer Composites. Advances in Polymer Science, 2009, , 41-95.	0.4	30
156	Hemocompatibility of poly(ether imide) membranes functionalized with carboxylic groups. Journal of Materials Science: Materials in Medicine, 2008, 19, 3203-3210.	1.7	29
157	Interaction of Human Plasma Proteins with Thin Gelatin-Based Hydrogel Films: A QCM-D and ToF-SIMS Study. Biomacromolecules, 2014, 15, 2398-2406.	2.6	29
158	Localized SDFâ€lalpha gene release mediated by collagen substrate induces CD117 ⁺ stem cells homing. Journal of Cellular and Molecular Medicine, 2010, 14, 392-402.	1.6	28
159	Pro-angiogenic CD14++ CD16+ CD163+ monocytes accelerate the in vitro endothelialization of soft hydrophobic poly(n-butyl acrylate) networks. Acta Biomaterialia, 2012, 8, 4253-4259.	4.1	28
160	Potential of NOD receptor ligands as immunomodulators in particulate vaccine carriers. Journal of Controlled Release, 2012, 164, 299-306.	4.8	28
161	Shapeâ€Memory Properties of Polyetherurethane Foams Prepared by Thermally Induced Phase Separation. Advanced Engineering Materials, 2012, 14, 818-824.	1.6	28
162	Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques. Journal of the Royal Society Interface, 2017, 14, 20161028.	1.5	28

#	Article	IF	CITATIONS
163	All-atom molecular dynamics simulation studies of fully hydrated gel phase DPPG and DPPE bilayers. Journal of Molecular Structure, 2009, 921, 38-50.	1.8	27
164	Soft poly(<i>n</i> êbutyl acrylate) networks with tailored mechanical properties designed as substrates for <i>in vitro</i> models. Polymers for Advanced Technologies, 2011, 22, 126-132.	1.6	27
165	Tripleâ€Shape Effect in Polymerâ€Based Composites by Cleverly Matching Geometry of Active Component with Heating Method. Advanced Materials, 2013, 25, 5514-5518.	11.1	27
166	Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide. RSC Advances, 2014, 4, 35099.	1.7	27
167	Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes. Smart Materials and Structures, 2019, 28, 055037.	1.8	27
168	Determination of solvent/polymer interaction parameters of moderately concentrated polymer solutions by vapor pressure osmometry. Polymer, 2008, 49, 2587-2594.	1.8	26
169	Polymers in Biomedicine. Macromolecular Bioscience, 2010, 10, 993-997.	2.1	26
170	Interaction of thrombocytes with poly(ether imide): The influence of processing. Clinical Hemorheology and Microcirculation, 2010, 46, 239-250.	0.9	26
171	One-Way and Reversible Dual-Shape Effect of Polymer Networks Based on Polypentadecalactone Segments. International Journal of Artificial Organs, 2011, 34, 231-237.	0.7	26
172	Polymers and drugs suitable for the development of a drug delivery drainage system in glaucoma surgery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 388-395.	1.6	26
173	Simulating the Shapeâ€Memory Behavior of Amorphous Switching Domains of Poly(<scp>L</scp> â€lactide) by Molecular Dynamics. Macromolecular Chemistry and Physics, 2013, 214, 1273-1283.	1.1	26
174	Drug-releasing shape-memory polymers – the role of morphology, processing effects, and matrix degradation. Expert Opinion on Drug Delivery, 2013, 10, 1193-1205.	2.4	26
175	Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility. Journal of Materials Chemistry B, 2014, 2, 3626-3635.	2.9	26
176	Modeling the heat transfer in magneto-sensitive shape-memory polymer nanocomposites with dynamically changing surface area to volume ratios. Polymer, 2015, 65, 215-222.	1.8	26
177	Response of Endothelial Cells to Gelatin-Based Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 527-540.	2.6	26
178	Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies. Journal of Membrane Science, 2007, 292, 145-157.	4.1	25
179	Intracardiac Erythropoietin Injection Reveals Antiinflammatory Potential and Improved Cardiac Functions Detected by Forced Swim Test. Transplantation Proceedings, 2008, 40, 962-966.	0.3	25
180	Immuno-compatibility of soft hydrophobic poly (n-butyl acrylate) networks with elastic moduli for regeneration of functional tissues. Clinical Hemorheology and Microcirculation, 2012, 50, 131-142.	0.9	25

#	Article	IF	CITATIONS
181	Reversible Actuation of Thermoplastic Multiblock Copolymers with Overlapping Thermal Transitions of Crystalline and Glassy Domains. Macromolecules, 2018, 51, 4624-4632.	2.2	25
182	Influence of Depolymerases and Lipases on the Degradation of Polyhydroxyalkanoates Determined in Langmuir Degradation Studies. Advanced Materials Interfaces, 2020, 7, 2000872.	1.9	25
183	Shape-memory properties of hydrogels having a poly($\hat{l}\mu$ -caprolactone) crosslinker and switching segment in an aqueous environment. European Polymer Journal, 2013, 49, 2457-2466.	2.6	24
184	Tripleâ€Shape Effect with Adjustable Switching Temperatures in Crosslinked Poly[ethyleneâ€ <i>co</i> â€(vinyl acetate)]. Macromolecular Chemistry and Physics, 2014, 215, 2446-2456.	1.1	24
185	Polymer Micronetworks with Shapeâ€Memory as Future Platform to Explore Shapeâ€Dependent Biological Effects. Advanced Healthcare Materials, 2014, 3, 1986-1990.	3.9	24
186	Design of Decorinâ€Based Peptides That Bind to Collagenâ€I and their Potential as Adhesion Moieties in Biomaterials. Angewandte Chemie - International Edition, 2015, 54, 10980-10984.	7.2	24
187	Molecular Modeling Investigations of Dry and Two Water-Swollen States of Biodegradable Polymers. Advanced Engineering Materials, 2006, 8, 434-439.	1.6	23
188	Enzymatic monolayer degradation study of multiblock copolymers consisting of poly(Îμ-caprolactone) and poly(p-dioxanone) blocks. Thin Solid Films, 2008, 516, 8821-8828.	0.8	23
189	Effect of cytochrome P450-dependent epoxyeicosanoids on Ristocetin-induced thrombocyte aggregation. Clinical Hemorheology and Microcirculation, 2012, 52, 403-416.	0.9	23
190	Noncontinuously Responding Polymeric Actuators. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33559-33564.	4.0	23
191	Gene delivery to the heart by magnetic nanobeads. Journal of Magnetism and Magnetic Materials, 2007, 311, 336-341.	1.0	22
192	Polymers in Biomedicine and Electronics. Macromolecular Rapid Communications, 2010, 31, 1487-1491.	2.0	22
193	Engineering Materials for Regenerative Medicine. MRS Bulletin, 2010, 35, 571-577.	1.7	22
194	Surface characterization and protein interaction of a series of model poly[acrylonitrile-co-(N-vinyl) Tj ETQq0 0 0 rg 87-96.	BT /Overlo 2.6	ock 10 Tf 50 22
195	On the tissue compatibility of poly(ether imide) membranes: an in vitro study on their interaction with human dermal fibroblasts and keratinocytes. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 23-42.	1.9	21
196	Poly(ether imide) membranes: studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 837-852.	1.9	21
197	Why Are So Few Degradable Polymeric Biomaterials Currently Established in Clinical Applications?. International Journal of Artificial Organs, 2011, 34, 71-75.	0.7	21
198	The influence of polymer scaffolds on cellular behaviour of bone marrow derived human mesenchymal stem cells. Clinical Hemorheology and Microcirculation, 2012, 52, 357-373.	0.9	21

#	Article	IF	CITATIONS
199	Polyglycerol-based polymer network films for potential biomedical applications. Journal of Materials Chemistry, 2012, 22, 21100.	6.7	21
200	Method for Preparation, Programming, and Characterization of Miniaturized Particulate Shape-Memory Polymer Matrices. Langmuir, 2014, 30, 2820-2827.	1.6	21
201	Water-Blown Polyurethane Foams Showing a Reversible Shape-Memory Effect. Polymers, 2016, 8, 412.	2.0	21
202	Bio-based composites from plant based precursors and hydroxyapatite with shape-memory capability. Composites Science and Technology, 2020, 194, 108138.	3.8	21
203	Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages. Molecular Therapy - Nucleic Acids, 2022, 27, 854-869.	2.3	21
204	Development of highly porous microparticles from poly(ether imide) prepared by a spraying/coagulation process. Journal of Membrane Science, 2006, 273, 106-115.	4.1	20
205	Amorphous phase-segregated copoly(ether)esterurethane thermoset networks with oligo(propylene) Tj ETQq1 1 Materials Science: Materials in Medicine, 2009, 20, 1815-1824.	0.784314 1.7	rgBT /Overl
206	Viability, Morphology and Function of Primary Endothelial Cells on Poly(n-Butyl Acrylate) Networks Having Elastic Moduli Comparable to Arteries. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 901-915.	1.9	20
207	Bio-hybrid organs and tissues for patient therapy: A future vision for 2030. Chemical Engineering and Processing: Process Intensification, 2012, 51, 79-87.	1.8	20
208	Omnidirectional Shape Memory Effect via Lyophilization of PEG Hydrogels. Macromolecular Rapid Communications, 2017, 38, 1600746.	2.0	20
209	Oligodepsipeptide (nano)carriers: Computational design and analysis of enhanced drug loading. Journal of Controlled Release, 2019, 301, 146-156.	4.8	20
210	Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept. MRS Energy & Sustainability, 2022, 9, 28-34.	1.3	20
211	How to accelerate biomaterial development? Strategies to support the application of novel polymer-based biomaterials in implantable devices. Expert Review of Medical Devices, 2011, 8, 533-537.	1.4	19
212	Viability, proliferation and adhesion of smooth muscle cells and human umbilical vein endothelial cells on electrospun polymer scaffolds. Clinical Hemorheology and Microcirculation, 2012, 50, 101-112.	0.9	19
213	Endothelial cell response to (co)polymer nanoparticles depending on the inflammatory environment and comonomer ratio. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 288-296.	2.0	19
214	Expression pattern analysis and activity determination of matrix metalloproteinase derived from human macrophage subsets. Clinical Hemorheology and Microcirculation, 2014, 58, 147-158.	0.9	19
215	The influence of the chemical composition of cell culture material on the growth and antibody production of hybridoma cells. Journal of Biotechnology, 2005, 115, 291-301.	1.9	18
216	Membranes from Acrylonitrile-Based Polymers for Selective Cultivation of Human Keratinocytes. Tissue Engineering, 2007, 13, 2995-3002.	4.9	18

#	Article	IF	CITATIONS
217	An Atomistic Modeling and Quantum Mechanical Approach to the Hydrolytic Degradation of Aliphatic Polyesters. Macromolecular Symposia, 2008, 269, 47-64.	0.4	18
218	Membrane association and selectivity of the antimicrobial peptide NKâ€2: a molecular dynamics simulation study. Journal of Peptide Science, 2009, 15, 654-667.	0.8	18
219	Localized and Sustained SDF-1 Gene Release Mediated by Fibronectin Films: A Potential Method for Recruiting Stem Cells. International Journal of Artificial Organs, 2009, 32, 141-149.	0.7	18
220	Artifact-free measurement of residual dipolar couplings in DMSO by the use of cross-linked perdeuterated poly(acrylonitrile) as alignment medium. Chemical Communications, 2010, 46, 8273.	2.2	18
221	Hemocompatibility of soft hydrophobic poly(n-butyl acrylate) networks with elastic moduli adapted to the elasticity of human arteries. Clinical Hemorheology and Microcirculation, 2011, 49, 375-390.	0.9	18
222	Quantitative Evaluation of Adhesion of Osteosarcoma Cells to Hydrophobic Polymer Substrate with Tunable Elasticity. Journal of Physical Chemistry B, 2012, 116, 8024-8030.	1.2	18
223	Two-Level Shape Changes of Polymeric Microcuboids Prepared from Crystallizable Copolymer Networks. Macromolecules, 2017, 50, 2518-2527.	2.2	18
224	Chemoresponsive Shape-Memory Effect of Rhodium–Phosphine Coordination Polymer Networks. Chemistry of Materials, 2019, 31, 5402-5407.	3.2	18
225	Molecular Insights into the Physical Adsorption of Amphiphilic Protein PhaF onto Copolyester Surfaces. Biomacromolecules, 2019, 20, 3242-3252.	2.6	18
226	Controlling Actuation Performance in Physically Cross-Linked Polylactone Blends Using Polylactide Stereocomplexation. Biomacromolecules, 2020, 21, 338-348.	2.6	18
227	Salt-Induced Shape-Memory Effect in Gelatin-Based Hydrogels. Biomacromolecules, 2020, 21, 2024-2031.	2.6	18
228	Preparation of novel composite membranes: Reactive coating on microporous poly(ether imide) support membranes. Journal of Membrane Science, 2006, 269, 49-59.	4.1	17
229	CD14+ CD163+ IL-10+ monocytes/macrophages: Pro-angiogenic and non pro-inflammatory isolation, enrichment and long-term secretion profile. Clinical Hemorheology and Microcirculation, 2010, 46, 217-223.	0.9	17
230	controlled heparin release from electrospun gelatin fibers. Journal of Controlled Release, 2011, 152, e28-e29.	4.8	17
231	The Influence of Zwitterionic Phospholipid Brushes Grafted via UVâ€Initiated or SIâ€ATR Polymerization on the Hemocompatibility of Polycarbonateurethane. Macromolecular Symposia, 2011, 309-310, 6-15.	0.4	17
232	Degradable Polyurethane/Soy Protein Shapeâ€Memory Polymer Blends Prepared Via Environmentallyâ€Friendly Aqueous Dispersions. Macromolecular Materials and Engineering, 2012, 297, 1213-1224.	1.7	17
233	Supramolecular hydrogel networks formed by molecular recognition of collagen and a peptide grafted to hyaluronic acid. Acta Biomaterialia, 2016, 38, 1-10.	4.1	17
234	Langmuir Monolayers as Tools to Study Biodegradable Polymer Implant Materials. Macromolecular Rapid Communications, 2019, 40, e1800611.	2.0	17

#	Article	IF	CITATIONS
235	Developing Advanced Functional Polymers for Biomedical Applications. Biomacromolecules, 2020, 21, 273-275.	2.6	17
236	Modification of poly(ether imide) membranes with brominated polyvinylpyrrolidone. Journal of Membrane Science, 2007, 291, 10-18.	4.1	16
237	Reducing the Endotoxin Burden of Desaminotyrosine―and Desaminotyrosyl Tyrosineâ€Functionalized Gelatin. Macromolecular Symposia, 2011, 309-310, 182-189.	0.4	16
238	Functional Polymer Scaffolds for Blood Vessel Tissue Engineering. Macromolecular Symposia, 2011, 309-310, 93-99.	0.4	16
239	Designing multifunctional polymers for cardiovascular implants. Clinical Hemorheology and Microcirculation, 2011, 49, 347-355.	0.9	16
240	Biodegradable polyesterurethanes with shape-memory properties for dexamethasone and aspirin controlled release. Journal of Controlled Release, 2011, 152, e21-e23.	4.8	16
241	Influence of fibre diameter and orientation of electrospun copolyetheresterurethanes on smooth muscle and endothelial cell behaviour. Clinical Hemorheology and Microcirculation, 2013, 55, 513-522.	0.9	16
242	The interaction of human macrophage subsets with silicone as a biomaterial. Clinical Hemorheology and Microcirculation, 2015, 61, 119-133.	0.9	16
243	Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers. Journal of Materials Chemistry A, 2015, 3, 8284-8293.	5.2	16
244	Influence of deformation temperature on structural variation and shape-memory effect of a thermoplastic semi-crystalline multiblock copolymer. EXPRESS Polymer Letters, 2015, 9, 624-635.	1.1	16
245	Influence of metal softness on the metal-organic catalyzed polymerization of morpholin-2,5-diones to oligodepsipeptides. European Polymer Journal, 2016, 85, 139-149.	2.6	16
246	Influence of surface roughness on neural differentiation of human induced pluripotent stem cells. Clinical Hemorheology and Microcirculation, 2017, 64, 355-366.	0.9	16
247	Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation. European Polymer Journal, 2018, 100, 77-85.	2.6	16
248	Support of HUVEC proliferation by pro-angiogenic intermediate CD163+ monocytes/macrophages: A co-culture experiment. Clinical Hemorheology and Microcirculation, 2011, 49, 423-430.	0.9	15
249	Highly Flexible Poly(ethylâ€2â€cyanoacrylate) Based Materials Obtained by Incorporation of Oligo(ethylene glycol)diglycidylether. Macromolecular Symposia, 2011, 309-310, 49-58.	0.4	15
250	Immunological evaluation of polystyrene and poly(ether imide) cell culture inserts with different roughness. Clinical Hemorheology and Microcirculation, 2012, 52, 375-389.	0.9	15
251	Shapeâ€memory properties of degradable electrospun scaffolds based on hollow microfibers. Polymers for Advanced Technologies, 2015, 26, 1468-1475.	1.6	15
252	Ultrasonic Cavitation Induced Shapeâ€Memory Effect in Porous Polymer Networks. Macromolecular Rapid Communications, 2016, 37, 1897-1903.	2.0	15

#	Article	IF	Citations
253	Generating Aptamers Interacting with Polymeric Surfaces for Biofunctionalization. Macromolecular Bioscience, 2016, 16, 1776-1791.	2.1	15
254	Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells. Biomacromolecules, 2017, 18, 3819-3833.	2.6	15
255	Solid-State NMR Characterization of Biodegradable Shape-Memory Polymer Networks. Macromolecular Symposia, 2005, 230, 110-115.	0.4	14
256	Biological evaluation of degradable, stimuli-sensitive multiblock copolymers having polydepsipeptide-and poly($\hat{l}\mu$ -caprolactone) segments in vitro. Clinical Hemorheology and Microcirculation, 2011, 48, 161-172.	0.9	14
257	Oligo(ω-pentadecalactone) decorated magnetic nanoparticles. Journal of Materials Chemistry, 2012, 22, 9237.	6.7	14
258	Poreâ€Size Distribution Controls Shapeâ€Memory Properties on the Macro―and Microscale of Polymeric Foams. Macromolecular Chemistry and Physics, 2013, 214, 1184-1188.	1.1	14
259	Smart Polymers for Biomedical Applications. Macromolecular Chemistry and Physics, 2014, 215, 2399-2402.	1.1	14
260	Quantification of adherent platelets on polymer-based biomaterials. Comparison of colorimetric and microscopic assessment. Clinical Hemorheology and Microcirculation, 2015, 61, 225-236.	0.9	14
261	Effect of diisocyanate linkers on the degradation characteristics of copolyester urethanes as potential drug carrier matrices. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 18-26.	2.0	14
262	Evaluation of Electrospun PCL-PIBMD Meshes Modified with Plasmid Complexes in Vitro and in Vivo. Polymers, 2016, 8, 58.	2.0	14
263	Polymer architecture versus chemical structure as adjusting tools for the enzymatic degradation of oligo ($\hat{\mu}$ -caprolactone) based films at the air-water interface. Polymer Degradation and Stability, 2016, 131, 114-121.	2.7	14
264	<i>In vivo</i> biocompatibility assessment of poly (ether imide) electrospun scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1034-1044.	1.3	14
265	A multifunctional multimaterial system for on-demand protein release. Journal of Controlled Release, 2018, 284, 240-247.	4.8	14
266	Characterization Methods for Shape-Memory Polymers. Advances in Polymer Science, 2009, , 97-145.	0.4	14
267	In Situ Xâ€Ray Scattering Studies of Poly(<i>ε</i> â€caprolactone) Networks with Grafted Poly(ethylene) Tj ETQq Macromolecular Rapid Communications, 2010, 31, 1546-1553.	1 1 0.7843 2.0	314 rgBT /C 13
268	Efficacy of CD14+ blood monocytes/macrophages isolation: Positive versus negative MACSâ,,¢ protocol. Clinical Hemorheology and Microcirculation, 2011, 48, 57-63.	0.9	13
269	Drug release from biodegradable polyesterurethanes with shape-memory effect. Journal of Controlled Release, 2011, 152, e20-e21.	4.8	13
270	Automated image-based analysis of adherent thrombocytes on polymer surfaces. Clinical Hemorheology and Microcirculation, 2012, 52, 349-355.	0.9	13

#	Article	IF	Citations
271	Atomistic Simulation of the Shapeâ€Memory Effect in Dry and Water Swollen Poly[(<i>rac</i> ″actide)â€ <i>co</i> â€glycolide] and Copolyester Urethanes Thereof. Macromolecular Chemistry and Physics, 2014, 215, 65-75.	1.1	13
272	Integrin \hat{I}^21 activation by micro-scale curvature promotes pro-angiogenic secretion of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 7415-7425.	2.9	13
273	Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment. Polymer Degradation and Stability, 2019, 161, 283-297.	2.7	13
274	Polymeric sheet actuators with programmable bioinstructivity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1895-1901.	3.3	13
275	Unraveling the Interplay between Abiotic Hydrolytic Degradation and Crystallization of Bacterial Polyesters Comprising Short and Medium Side-Chain-Length Polyhydroxyalkanoates. Biomacromolecules, 2020, 21, 761-771.	2.6	13
276	Strain recovery and stress relaxation behaviour of multiblock copolymer blends physically cross-linked with PLA stereocomplexation. Polymer, 2020, 209, 122984.	1.8	13
277	Venous and Arterial Endothelial Cells from Human Umbilical Cords: Potential Cell Sources for Cardiovascular Research. International Journal of Molecular Sciences, 2021, 22, 978.	1.8	13
278	Functional Nanoparticles and their Interactions with Mesenchymal Stem Cells. Current Pharmaceutical Design, 2017, 23, 3814-3832.	0.9	13
279	Poly(ether imide) Scaffolds as Multifunctional Materials for Potential Applications in Regenerative Medicine. Artificial Organs, 2006, 30, 764-769.	1.0	12
280	Shape-Memory Properties of Radiopaque Micro-Composites from Amorphous Polyether Urethanes Designed for Medical Application. Materials Research Society Symposia Proceedings, 2009, 1190, 1.	0.1	12
281	A Molecular Dynamic Analysis of Gelatin as an Amorphous Material: Prediction of Mechanical Properties of Gelatin Systems. International Journal of Artificial Organs, 2011, 34, 139-151.	0.7	12
282	Near-Infrared Dye-Loaded Plga Nanoparticles Prepared by Spray Drying for Photoacoustic Applications. International Journal of Artificial Organs, 2011, 34, 249-254.	0.7	12
283	Hydrolytic Degradation Behavior of Poly(<i>racâ€</i> li>lactide) <i>â€blockâ€</i> poly(propylene) Tj ETQq1 1 0.784. Applications. Macromolecular Bioscience, 2011, 11, 1637-1646.	314 rgBT / 2.1	Overlock 10 12
284	Elastic multiblock copolymers for vascular regeneration: Protein adsorption and hemocompatibility. Clinical Hemorheology and Microcirculation, 2012, 52, 337-348.	0.9	12
285	Faster droplet production by delayed surfactant-addition in two-phase microfluidics to form thermo-sensitive microgels. Journal of Colloid and Interface Science, 2015, 452, 38-42.	5.0	12
286	Mechanical characterization of oligo(ethylene glycol)-based hydrogels by dynamic nanoindentation experiments. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46, 1-10.	1.5	12
287	Inflammatory responses of primary human dendritic cells towards polydimethylsiloxane and polytetrafluoroethylene. Clinical Hemorheology and Microcirculation, 2017, 64, 899-910.	0.9	12
288	Implementing and Quantifying the Shapeâ€Memory Effect of Single Polymeric Micro/Nanowires with an Atomic Force Microscope. ChemPhysChem, 2018, 19, 2078-2084.	1.0	12

#	Article	IF	CITATIONS
289	Microscale roughness regulates laminin-5 secretion of bone marrow mesenchymal stem cells. Clinical Hemorheology and Microcirculation, 2019, 73, 237-247.	0.9	12
290	Coaxial electrospinning of PEEU/gelatin to fiber meshes with enhanced mesenchymal stem cell attachment and proliferation. Clinical Hemorheology and Microcirculation, 2020, 74, 53-66.	0.9	12
291	Intracardiac echocardiography to enable successful edge-to-edge transcatheter tricuspid valve repair in patients with insufficient TEE quality. Clinical Hemorheology and Microcirculation, 2020, 76, 199-210.	0.9	12
292	Fiber diameter as design parameter for tailoring the macroscopic shape-memory performance of electrospun meshes. Materials and Design, 2021, 202, 109546.	3.3	12
293	Thermomechanical Behaviour of Biodegradable Shape-memory Polymer Foams. Materials Research Society Symposia Proceedings, 2009, 1190, 94.	0.1	11
294	In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen's egg chorioallantoic membrane test. Clinical Hemorheology and Microcirculation, 2010, 46, 233-238.	0.9	11
295	Interaction of human umbilical vein endothelial cells (HUVEC) with platelets in vitro: Influence of platelet concentration and reactivity. Clinical Hemorheology and Microcirculation, 2013, 55, 111-120.	0.9	11
296	Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol). Clinical Hemorheology and Microcirculation, 2013, 54, 235-248.	0.9	11
297	The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone. Clinical Hemorheology and Microcirculation, 2015, 61, 301-321.	0.9	11
298	Integrated process for preparing porous, surface functionalized polyetherimide microparticles. Polymers for Advanced Technologies, 2015, 26, 1447-1455.	1.6	11
299	Influence of programming strain rates on the shapeâ€memory performance of semicrystalline multiblock copolymers. Journal of Polymer Science, Part B. Polymer Physics, 2016, 54, 1935-1943.	2.4	11
300	Design of polycationic micelles by selfâ€assembly of polyethyleneimine functionalized oligo[(<i>ε</i> â€caprolactone)â€ <i>co</i> â€glycolide] ABA block copolymers. Polymers for Advanced Technologies, 2017, 28, 1278-1284.	1.6	11
301	Angiogenic potential of endothelial and tumor cells seeded on gelatin–based hydrogels in response to electrical stimulations. Clinical Hemorheology and Microcirculation, 2017, 64, 941-949.	0.9	11
302	Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles â€" Composition-dependent skin penetration enhancement of a dye probe and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 66-75.	2.0	11
303	Poly(carbonateâ€ureaâ€urethane) networks exhibiting highâ€strain shapeâ€memory effect. Polymers for Advanced Technologies, 2017, 28, 1285-1293.	1.6	11
304	Phagocytosis of spherical and ellipsoidal micronetwork colloids from crosslinked poly(ε-caprolactone). International Journal of Pharmaceutics, 2019, 567, 118461.	2.6	11
305	Collagen type-IV Langmuir and Langmuir–SchÃÆr layers as model biointerfaces to direct stem cell adhesion. Biomedical Materials (Bristol), 2019, 14, 024101.	1.7	11
306	Electrical Actuation of Coated and Composite Fibers Based on Poly[ethylene―co â€(vinyl acetate)]. Macromolecular Materials and Engineering, 2021, 306, 2000579.	1.7	11

#	Article	IF	CITATIONS
307	Thiol–Thioester Exchange Reactions in Precursors Enable pH-Triggered Hydrogel Formation. Biomacromolecules, 2021, 22, 1875-1884.	2.6	11
308	Dynamics of β1-Integrins in Living Fibroblasts—Effect of Substratum Wettability. Biophysical Journal, 2005, 89, 3555-3562.	0.2	10
309	In Vitro Evaluation of Elastic Multiblock Co-polymers as a Scaffold Material for Reconstruction of Blood Vessels. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2205-2226.	1.9	10
310	The Influence of Programming Conditions on the Tripleâ€Shape Effect of Copolymer Networks with Poly(⟨i⟩ω⟨/i⟩â€pentadecalactone) and Poly(⟨i⟩ε⟨/i⟩â€caprolactone) as Switching Segments. Macromolecular Symposia, 2011, 309-310, 147-153.	0.4	10
311	Shapeâ€Memory Hydrogels with Crystallizable Oligotetrahydrofuran Side Chains. Macromolecular Symposia, 2014, 345, 8-13.	0.4	10
312	Shapeâ€Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying. Macromolecular Materials and Engineering, 2015, 300, 522-530.	1.7	10
313	Adsorption capacity of poly(ether imide) microparticles to uremic toxins. Clinical Hemorheology and Microcirculation, 2016, 61, 657-665.	0.9	10
314	Hexyl-modified morpholine-2,5-dione-based oligodepsipeptides with relatively low glass transition temperature. Polymer, 2016, 105, 318-326.	1.8	10
315	Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel). Clinical Hemorheology and Microcirculation, 2017, 67, 297-307.	0.9	10
316	Enzymatic action as switch of bulk to surface degradation of clicked gelatinâ€based networks. Polymers for Advanced Technologies, 2017, 28, 1318-1324.	1.6	10
317	The influence of pH on the molecular degradation mechanism of PLGA. MRS Advances, 2018, 3, 3883-3889.	0.5	10
318	Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(ε-caprolactone) Networks and Enable Self-Healing. Polymers, 2018, 10, 255.	2.0	10
319	Glucose-responsive shape-memory cryogels. Journal of Materials Research, 2020, 35, 2396-2404.	1.2	10
320	Thermally-Induced Shape-Memory Behavior of Degradable Gelatin-Based Networks. International Journal of Molecular Sciences, 2021, 22, 5892.	1.8	10
321	Influence of the surface structure of a multiblock copolymer on the cellular behavior of primary cell cultures of the upper aerodigestive tractin vitro. Journal of Biomedical Materials Research - Part A, 2007, 83A, 558-569.	2.1	9
322	Degradable Depsipeptide-Based Multiblock Copolymers with Polyester or Polyetherester Segments. International Journal of Artificial Organs, 2011, 34, 103-109.	0.7	9
323	Characterization of Multiblock Copolymers by Chromatographic Techniques. International Journal of Artificial Organs, 2011, 34, 110-117.	0.7	9
324	Advances in actively moving polymers. Macromolecular Materials and Engineering, 2012, 297, 1135-1137.	1.7	9

#	Article	IF	Citations
325	The influence of poly(n-butyl acrylate) networks on viability and function of smooth muscle cells and vascular fibroblasts. Clinical Hemorheology and Microcirculation, 2012, 52, 283-294.	0.9	9
326	Polyalkylcyanoacrylates as in situ formed diffusion barriers in multimaterial drug carriers. Journal of Controlled Release, 2013, 169, 321-328.	4.8	9
327	Cultivation and spontaneous differentiation of rat bone marrow-derived mesenchymal stem cells on polymeric surfaces. Clinical Hemorheology and Microcirculation, 2013, 55, 143-156.	0.9	9
328	Interaction of poly(ether imide) films with early immune mechanisms. Clinical Hemorheology and Microcirculation, 2014, 57, 203-212.	0.9	9
329	Highâ€Throughput Synthesis as a Technology Platform for Copolymer Libraries. Macromolecular Symposia, 2014, 345, 105-111.	0.4	9
330	Influence of Compression Direction on the Shape-Memory Effect of Micro-Cylinder Arrays Prepared from Semi-Crystalline Polymer Networks. MRS Advances, 2016, 1, 1985-1993.	0.5	9
331	Stimuli Responsive and Multifunctional Polymers: Progress in Materials and Applications. Macromolecular Rapid Communications, 2016, 37, 1856-1859.	2.0	9
332	Effect of extracts of poly(ether imide) microparticles on cytotoxicity, ROS generation and proinflammatory effects on human monocytic (THP-1) cells. Clinical Hemorheology and Microcirculation, 2016, 61, 667-680.	0.9	9
333	Trend to move from permanent metals to degradable, multifunctional polymer or metallic implants in the example of coronary stents. Expert Review of Medical Devices, 2016, 13, 1001-1003.	1.4	9
334	Reversible 2D networks of oligo(<i>$\hat{l}\mu$</i> -caprolactone) at the airâ \in water interface. Biomedical Materials (Bristol), 2019, 14, 034103.	1.7	9
335	Endothelial cell migration, adhesion and proliferation on different polymeric substrates. Clinical Hemorheology and Microcirculation, 2019, 70, 511-529.	0.9	9
336	Current Status of Langmuir Monolayer Degradation of Polymeric Biomaterials. International Journal of Artificial Organs, 2011, 34, 123-128.	0.7	8
337	Viability, Adhesion and Differentiated Phenotype of Articular Chondrocytes on Degradable Polymers and Electro-Spun Structures Thereof. Macromolecular Symposia, 2011, 309-310, 28-39.	0.4	8
338	Advanced Functional Polymers for Medicine. Macromolecular Bioscience, 2011, 11, 1621-1624.	2.1	8
339	Influence of Different Heating Regimes on the Shape-Recovery Behavior of Poly(L-Lactide) in Simulated Thermomechanical Tests. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 259-264.	0.7	8
340	Behaviour of fibroblasts on water born acrylonitrile-based copolymers containing different cationic and anionic moieties. Clinical Hemorheology and Microcirculation, 2012, 52, 295-311.	0.9	8
341	Viability and function of primary human endothelial cells on smooth poly(ether imide) films. Clinical Hemorheology and Microcirculation, 2012, 52, 267-282.	0.9	8
342	Interaction of Angiogenically Stimulated Intermediate CD163 ⁺ Monocytes/Macrophages With Soft Hydrophobic Poly(<i>n</i> â€Butyl Acrylate) Networks With Elastic Moduli Matched to That of Human Arteries. Artificial Organs, 2012, 36, E28-38.	1.0	8

#	Article	IF	CITATIONS
343	The influence of polystyrene and poly(ether imide) inserts with different roughness, on the activation of dendritic cells. Clinical Hemorheology and Microcirculation, 2013, 55, 157-168.	0.9	8
344	Advanced Functional Polymers for Medicine. Advanced Healthcare Materials, 2014, 3, 1939-1940.	3.9	8
345	Surface pressureâ€induced isothermal 2D―to 3Dâ€transitions in Langmuir films of poly(<i>ĺµ</i> â€caprolactone)s and oligo(<i>ĺµ</i> â€caprolactone) based polyesterurethanes. Polymers for Advanced Technologies, 2015, 26, 1411-1420.	1.6	8
346	Effect of temperature on platelet adherence. Clinical Hemorheology and Microcirculation, 2016, 61, 681-688.	0.9	8
347	Effects of Tacrolimus or Sirolimus on the adhesion of vascular wall cells: Controlled in-vitro comparison study. Clinical Hemorheology and Microcirculation, 2017, 67, 309-318.	0.9	8
348	Revival of transcatheter PFO closure: A meta-analysis of randomized controlled trials - impact of shunt size and age. American Heart Journal, 2018, 201, 95-102.	1.2	8
349	Synthesis of Wellâ€Defined Dihydroxy Telechelics by (Co)polymerization of Morpholineâ€2,5â€Diones Catalyzed by Sn(IV) Alkoxide. Macromolecular Bioscience, 2018, 18, e1800257.	2.1	8
350	Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system. Clinical Hemorheology and Microcirculation, 2019, 71, 183-191.	0.9	8
351	Shape-Memory Polymers. Polymers and Polymeric Composites, 2019, , 605-663.	0.6	8
352	Strategies for simultaneous and successive delivery of RNA. Journal of Molecular Medicine, 2020, 98, 1767-1779.	1.7	8
353	In vivo biocompatibility study of degradable homo- versus multiblock copolymers and their (micro)structure compared to an established biomaterial. Clinical Hemorheology and Microcirculation, 2020, 75, 163-176.	0.9	8
354	Origami hand for soft robotics driven by thermally controlled polymeric fiber actuators. MRS Communications, 2021, 11, 476-482.	0.8	8
355	Synthesis of fluorescence-labelled short-chain polyester segments for the investigation of bioresorbable poly(ester-urethane)s. Macromolecular Chemistry and Physics, 1997, 198, 1481-1498.	1.1	7
356	Molecular Modeling and Experimental Investigation of Hydrolytically Degradable Polymeric Biomaterials. Advances in Science and Technology, 0, , .	0.2	7
357	Degradation of and angiogenesis around multiblock copolymers containing poly(p-dioxanone)- and poly(ε-caprolactone)-segments subcutaneously implanted in the rat neck. Clinical Hemorheology and Microcirculation, 2010, 45, 117-122.	0.9	7
358	Understanding Instability and Rupture of Poly(Alkyl-2-Cyanoacrylate) Capsules. International Journal of Artificial Organs, 2011, 34, 243-248.	0.7	7
359	Shape-Memory Properties of Electrospun Non-wovens Prepared from Amorphous Polyetherurethanes Under Stress-free and Constant Strain Conditions. Materials Research Society Symposia Proceedings, 2012, 1403, 49.	0.1	7
360	Adherence and viability of primary human keratinocytes and primary human dermal fibroblasts on acrylonitrile-based copolymers with different concentrations of positively charged functional groups. Clinical Hemorheology and Microcirculation, 2012, 52, 391-401.	0.9	7

#	Article	IF	CITATIONS
361	Advanced functional polymers for medicine: Multifunctional biomaterials. Acta Biomaterialia, 2012, 8, 4199.	4.1	7
362	Test system for evaluating the influence of polymer properties on primary human keratinocytes and fibroblasts in mono- and coculture. Journal of Biotechnology, 2013, 166, 58-64.	1.9	7
363	A multifunctional bilayered microstent as glaucoma drainage device. Journal of Controlled Release, 2013, 172, 1002-1010.	4.8	7
364	Characterization of protein-adjuvant coencapsulation in microparticles for vaccine delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 403-407.	2.0	7
365	High Throughput Characterization of Polymer Libraries by Diffuse Reflectance Infrared Spectroscopy. Macromolecular Materials and Engineering, 2014, 299, 1292-1297.	1.7	7
366	Characterization of Langmuir Films Prepared from Copolyesterurethanes Based on Oligo(Ήâ€pentadecalactone) and Oligo(εâ€caprolactone) Segments. Macromolecular Chemistry and Physics, 2014, 215, 2437-2445.	1.1	7
367	Single and competitive protein adsorption on polymeric surfaces. Polymers for Advanced Technologies, 2015, 26, 1387-1393.	1.6	7
368	Reversible shapeâ€memory properties of surface functionalizable, crystallizable crosslinked terpolymers. Polymers for Advanced Technologies, 2015, 26, 1421-1427.	1.6	7
369	Cell-based detection of microbial biomaterial contaminations. Clinical Hemorheology and Microcirculation, 2015, 60, 51-63.	0.9	7
370	Going Beyond Compromises in Multifunctionality of Biomaterials. Advanced Healthcare Materials, 2015, 4, 642-645.	3.9	7
371	The relevance of hydrophobic segments in multiblock copolyesterurethanes for their enzymatic degradation at the air-water interface. Polymer, 2016, 102, 92-98.	1.8	7
372	Strategy for the hemocompatibility testing of microparticles. Clinical Hemorheology and Microcirculation, 2017, 64, 345-353.	0.9	7
373	The influence of thermal treatment on the morphology in differently prepared films of a oligodepsipeptide based multiblock copolymer. Polymers for Advanced Technologies, 2017, 28, 1339-1345.	1.6	7
374	Torsional Fiber Actuators from Shape-memory Polymer. MRS Advances, 2018, 3, 3861-3868.	0.5	7
375	Structural performance of a climbing cactus: making the most of softness. Journal of the Royal Society Interface, 2021, 18, 20210040.	1.5	7
376	Overview of Shape-Memory Polymers. , 2010, , 1-20.		7
377	The influence of a multifunctional, polymeric biomaterial on the concentration of acute phase proteins in an animal model. Clinical Hemorheology and Microcirculation, 2007, 36, 301-11.	0.9	7
378	Thermomechanical Properties and Shape-Memory Capability of Drug Loaded Semi-Crystalline Polyestermethacrylate Networks. Materials Research Society Symposia Proceedings, 2009, 1190, 113.	0.1	6

#	Article	IF	CITATIONS
379	Novel Polymer Blends for the Preparation of Membranes for Biohybrid Liver Systems. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 821-839.	1.9	6
380	Simulation of Volumetric Swelling of Degradable Poly[(Rac-Lactide)-Co-Glycolide] Based Polyesterurethanes Containing Different Urethane-Linkers. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 293-301.	0.7	6
381	Physically crosslinked gelatins functionalized with tyrosine moieties do not induce angiogenesis or thrombus formation in the developing vasculature in the avian chorioallantoic membrane. Clinical Hemorheology and Microcirculation, 2012, 50, 55-63.	0.9	6
382	Smooth muscle and endothelial cell behaviour on degradable copolyetheresterurethane films. Clinical Hemorheology and Microcirculation, 2012, 52, 313-323.	0.9	6
383	Effect of polystyrene and polyether imide cell culture inserts with different roughness on chondrocyte metabolic activity and gene expression profiles of aggrecan and collagen. Clinical Hemorheology and Microcirculation, 2013, 55, 523-533.	0.9	6
384	Adherence and shear-resistance of primary human endothelial cells on smooth poly(ether imide) films. Clinical Hemorheology and Microcirculation, 2014, 57, 147-158.	0.9	6
385	Influence of intermediate degradation products on the hydrolytic degradation of poly[(<i>rac</i> àêtactide)â€xi>coàêglycolide] at the air–water interface. Polymers for Advanced Technologies, 2015, 26, 1402-1410.	1.6	6
386	Functional nanocarriers by miniaturization of polymeric materials. Nanomedicine, 2016, 11, 1507-1509.	1.7	6
387	Dermal Drug Delivery by Nanocarriers. Journal of Controlled Release, 2016, 242, 1-2.	4.8	6
388	Engineering of cell-laden gelatin-based microgels for cell delivery and immobilization in regenerative therapies. Clinical Hemorheology and Microcirculation, 2017, 67, 251-259.	0.9	6
389	The effect of stiffness variation of electrospun fiber meshes of multiblock copolymers on the osteogenic differentiation of human mesenchymal stem cells. Clinical Hemorheology and Microcirculation, 2019, 73, 219-228.	0.9	6
390	Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability. Materials and Design, 2019, 163, 107530.	3.3	6
391	Quadruple-shape hydrogels. Smart Materials and Structures, 2019, 28, 055026.	1.8	6
392	Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes. European Polymer Journal, 2020, 137, 109916.	2.6	6
393	Supramolecular Gelatin Networks Based on Inclusion Complexes. Macromolecular Bioscience, 2020, 20, e2000221.	2.1	6
394	Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis. European Polymer Journal, 2021, 143, 110207.	2.6	6
395	Approaches of combining a 3D-printed elastic structure and a hydrogel to create models for plant-inspired actuators. MRS Advances, 2021, 6, 625-630.	0.5	6
396	Polydopamine-based biofunctional substrate coating promotes mesenchymal stem cell migration. MRS Advances, 2021, 6, 739-744.	0.5	6

#	Article	IF	Citations
397	Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. International Journal of Molecular Sciences, 2021, 22, 13120.	1.8	6
398	Tailor-made intelligent polymers for biomedical applications. , 2001, , 278-290.		5
399	Triple-Shape Capability of Thermo-sensitive Nanocomposites from Multiphase Polymer Networks and Magnetic Nanoparticles. Materials Research Society Symposia Proceedings, 2009, 1190, 87.	0.1	5
400	Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications. Clinical Hemorheology and Microcirculation, 2010, 45, 401-411.	0.9	5
401	Upscaling the synthesis of biodegradable multiblock copolymers capable of a shape-memory effect. Journal of Materials Science: Materials in Medicine, 2011, 22, 2147-2154.	1.7	5
402	In Vitro and In Vivo Evaluation of a Multifunctional Hyaluronic acid Based Hydrogel System for Local Application on the Retina. Macromolecular Symposia, 2011, 309-310, 229-235.	0.4	5
403	Design of semi-interpenetrating networks based on poly(ethyl-2-cyanoacrylate) and oligo(ethylene) Tj ETQq1 1 (0.784314 0.1	rgBT /Overloc
404	Hydrogel Networks Based on Aba Triblock Copolymers. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 243-248.	0.7	5
405	Influence of Drying Procedures on Network Formation and Properties of Hydrogels from Functionalized Gelatin. Macromolecular Symposia, 2013, 334, 24-32.	0.4	5
406	Immunoâ€compatibility of amphiphilic ABA triblock copolymerâ€based hydrogel films for biomedical applications. Polymers for Advanced Technologies, 2015, 26, 1378-1386.	1.6	5
407	Conditional Ultrasound Sensitivity of Poly[(<i>N</i> â€isopropylacrylamide)â€ <i>co</i> â€(vinyl imidazole)] Microgels for Controlled Lipase Release. Macromolecular Rapid Communications, 2015, 36, 1891-1896.	2.0	5
408	Influence of Diurethane Linkers on the Langmuir Layer Behavior of Oligo[(racâ€lactide)â€∢i>coà€glycolide]â€based Polyesterurethanes. Macromolecular Rapid Communications, 2015, 36, 1910-1915.	2.0	5
409	Synthesis and characterization of star-shaped oligo(ethylene glycol) with tyrosine derived moieties under variation of their molecular weight. Clinical Hemorheology and Microcirculation, 2015, 60, 13-23.	0.9	5
410	Enzymatic Degradation of Oligo(εâ€caprolactone)s Endâ€Capped with Phenylboronic Acid Derivatives at the Air–Water Interface. Macromolecular Rapid Communications, 2016, 37, 1966-1971.	2.0	5
411	Langmuir–Schaefer films of fibronectin as designed biointerfaces for culturing stem cells. Polymers for Advanced Technologies, 2017, 28, 1305-1311.	1.6	5
412	Influence of surfactants on depsipeptide submicron particle formation. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 61-65.	2.0	5
413	Response of encapsulated cells to a gelatin matrix with varied bulk and microenvironmental elastic properties. Polymers for Advanced Technologies, 2017, 28, 1245-1251.	1.6	5
414	Albumin solder covalently bound to a polymer membrane: New approach to improve binding strength in laser tissue soldering in-vitro. Clinical Hemorheology and Microcirculation, 2018, 69, 317-326.	0.9	5

#	Article	IF	Citations
415	Influence of different surface treatments of poly(n-butyl acrylate) networks on fibroblasts adhesion, morphology and viability. Clinical Hemorheology and Microcirculation, 2018, 69, 305-316.	0.9	5
416	Comparison of two substrate materials used as negative control in endothelialization studies: Glass versus polymeric tissue culture plate. Clinical Hemorheology and Microcirculation, 2018, 69, 437-445.	0.9	5
417	Characterization of Tissue Transglutaminase as a Potential Biomarker for Tissue Response toward Biomaterials. ACS Biomaterials Science and Engineering, 2019, 5, 5979-5989.	2.6	5
418	Dedifferentiation of mature adipocytes with periodic exposure to cold. Clinical Hemorheology and Microcirculation, 2019, 71, 415-424.	0.9	5
419	Evaluation of human mesenchymal stem cell senescence, differentiation and secretion behavior cultured on polycarbonate cell culture inserts. Clinical Hemorheology and Microcirculation, 2019, 70, 573-583.	0.9	5
420	Elasticity of fiber meshes from multiblock copolymers influences endothelial cell behavior. Clinical Hemorheology and Microcirculation, 2020, 74, 405-415.	0.9	5
421	Shape-Memory Effect by Sequential Coupling of Functions over Different Length Scales in an Architectured Hydrogel. Biomacromolecules, 2020, 21, 680-687.	2.6	5
422	Shapeâ€Programmable Architectured Hydrogels Sensitive to Ultrasound. Macromolecular Rapid Communications, 2020, 41, 1900658.	2.0	5
423	Microparticles from glycidylmethacrylated gelatin as cell carriers prepared in an aqueous two-phase system. European Polymer Journal, 2021, 142, 110148.	2.6	5
424	Assessing the Influence of Temperatureâ€Memory Creation on the Degradation of Copolyesterurethanes in Ultrathin Films. Advanced Materials Interfaces, 2021, 8, 2001926.	1.9	5
425	Controlled Drug Release from Biodegradable Shape-Memory Polymers. Advances in Polymer Science, 2009, , 177-205.	0.4	5
426	Dual and Triple Shape Capability of AB Polymer Networks based on Poly ($\hat{l}\mu$ -caprolactone) dimethacrylates. , 2008, , .		5
427	Mechanical Properties of Polymer Blends Having Shape-memory Capability. Materials Research Society Symposia Proceedings, 2009, 1190, 24.	0.1	4
428	Amorphous Polymer Networks Combining Three Functionalities–Shape-memory, Biodegradability, and Drug Release. Materials Research Society Symposia Proceedings, 2009, 1190, 184.	0.1	4
429	Shapeâ€Memory Polymers. ChemInform, 2002, 33, 251-251.	0.1	4
430	Degradation Behavior of Porous Copolyester Microparticles in the Light of Dynamic Changes in Their Morphology. Macromolecular Symposia, 2011, 309-310, 123-133.	0.4	4
431	A Blend of Poly(εâ€caprolactone) and Poly[(εâ€caprolactone)â€ <i>co</i> â€glycolide] with Remarkable Mechanical Features and Wide Applicability as Biomaterial. Macromolecular Symposia, 2011, 309-310, 59-67.	0.4	4
432	Influence of a Polyester Coating of Magnetic Nanoparticles on Magnetic Heating Behavior of Shape-Memory Polymer-Based Composites. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 203-209.	0.7	4

#	Article	IF	CITATIONS
433	Tailoring of Mechanical Properties of Diisocyanate Crosslinked Gelatin-Based Hydrogels. Materials Research Society Symposia Proceedings, 2013, 1569, 3-8.	0.1	4
434	Immunological investigations of oligoethylene glycols functionalized with desaminotyrosine and desaminotyrosyltyrosine. Materials Research Society Symposia Proceedings, 2013, 1569, 9-14.	0.1	4
435	Influence of physically crosslinked gelatins on the vasculature in the avian chorioallantoic membrane. Clinical Hemorheology and Microcirculation, 2013, 55, 133-142.	0.9	4
436	Angiogenically stimulated alternative monocytes maintain their pro-angiogenic and non-inflammatory phenotype in long-term co-cultures with HUVEC. Clinical Hemorheology and Microcirculation, 2014, 58, 229-240.	0.9	4
437	Influence of expansion cooling regime on morphology of poly(<i>ε</i> â€caprolactone) foams prepared by pressure quenching using supercritical CO ₂ . Polymers for Advanced Technologies, 2014, 25, 1349-1355.	1.6	4
438	Shapeâ€Memory Polymer Networks Prepared from Starâ€Shaped Poly[(<i>L</i> â€lactide)â€ <i>co</i> â€glycolide] Precursors. Macromolecular Symposia, 2014, 345, 98-104.	0.4	4
439	Modeling of stress relaxation of a semi-crystalline multiblock copolymer and its deformation behavior. Clinical Hemorheology and Microcirculation, 2015, 60, 109-120.	0.9	4
440	Advanced Functional Polymers for Medicine. Macromolecular Bioscience, 2016, 16, 1743-1744.	2.1	4
441	Monolayer formation and shear-resistance of human vein endothelial cells onÂgelatin-based hydrogels with tailorable elasticity and degradability. Clinical Hemorheology and Microcirculation, 2017, 64, 699-710.	0.9	4
442	Smart Materials. ChemPhysChem, 2018, 19, 1938-1940.	1.0	4
443	Mechanical characterization of electrospun polyesteretherurethane (PEEU) meshes by atomic force microscopy. Clinical Hemorheology and Microcirculation, 2019, 73, 229-236.	0.9	4
444	Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries. Clinical Hemorheology and Microcirculation, 2019, 71, 277-289.	0.9	4
445	Matching Magnetic Heating and Thermal Actuation for Sequential Coupling in Hybrid Composites by Design. Macromolecular Rapid Communications, 2020, 41, 1900440.	2.0	4
446	Alkynyl-functionalized chain-extended PCL for coupling to biological molecules. European Polymer Journal, 2020, 136, 109908.	2.6	4
447	Polymeric Microcuboids Programmable for Temperatureâ€Memory. Macromolecular Materials and Engineering, 2020, 305, 2000333.	1.7	4
448	Polyetheresterurethane Based Porous Scaffolds with Tailorable Architectures by Supercritical CO2 Foaming. MRS Advances, 2020, 5, 2317-2330.	0.5	4
449	Dihydroxy terminated teroligomers from morpholine-2,5-diones. European Polymer Journal, 2021, 143, 110189.	2.6	4
450	Anisotropy Effects in the Shapeâ€Memory Performance of Polymer Foams. Macromolecular Materials and Engineering, 2021, 306, 2000730.	1.7	4

#	Article	IF	CITATIONS
451	4D-actuators by 3D-printing combined with water-based curing. Materials Today Communications, 2022, 30, 102966.	0.9	4
452	Synthesis of biomedical, fluorescence-labelled polyesterurethanes for the investigation of their degradation. Macromolecular Chemistry and Physics, 1997, 198, 2667-2688.	1.1	3
453	Regenerative Medicine?Membranes and Scaffolds. Artificial Organs, 2006, 30, 727-729.	1.0	3
454	Modulation of hybridoma cell growth and antibody production by coating cell culture material with extracellular matrix proteins. Biochemical Engineering Journal, 2007, 35, 301-308.	1.8	3
455	X-ray Scattering Studies to Investigate Triple-shape Capability of Polymer Networks Based on poly(ε-caprolactone) and poly(cyclohexyl methacrylate) Segments. Materials Research Society Symposia Proceedings, 2009, 1190, 75.	0.1	3
456	Influence of VEGF stimulated human macrophages on the proliferation of dermal microvascular endothelial cells: Coculture experiments. Clinical Hemorheology and Microcirculation, 2010, 46, 211-216.	0.9	3
457	Preparation of Threeâ€Dimensional Scaffolds from Degradable Poly(ether)esterurethane by Thermallyâ€Induced Phase Separation. Macromolecular Symposia, 2011, 309-310, 76-83.	0.4	3
458	Adjuvant Effect of Microencapsulated NOD Ligands Studied in a Human Phagocytic Cell Line. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 229-236.	0.7	3
459	Thermal Properties and Crystallinity of Grafted Copolymer Networks containing a Crystallizable Poly(ε-caprolactone) Crosslinker in an aqueous environment. Materials Research Society Symposia Proceedings, 2012, 1403, 7.	0.1	3
460	POLYMER SCAFFOLDS FOR REGENERATIVE THERAPIES â€" DESIGN OF HIERARCHICALLY ORGANIZED STRUCTURES AND THEIR MORPHOLOGICAL CHARACTERIZATION. Nano LIFE, 2012, 02, 1230005.	0.6	3
461	Synthesis and Characterization of Oligo(Ethylene Glycol)s Functionalized with Desaminotyrosine or Desaminotyrosyltyrosine. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 170-176.	0.7	3
462	Characterization of Oligo(Ethylene Glycol) and Oligoglycerol Functionalized Poly(Ether Imide) by Angle-Dependent X-Ray Photoelectron Spectroscopy. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 215-222.	0.7	3
463	Oligo(â^Š-caprolactone)-Based Polymer Networks Prepared by Photocrosslinking in Solution. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 273-279.	0.7	3
464	Influence of Co-Monomer Ratio on the Chemical Properties and Cytotoxicity of Poly[Acrylonitrile-Co-(N-Vinylpyrrolidone)] Nanoparticles. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 308-314.	0.7	3
465	Determining loading kinetics of drug releasing degradable shape-memory polymers. Materials Research Society Symposia Proceedings, 2012, 1403, 31.	0.1	3
466	Influence of Comesogens on the Thermal and Actuation Properties of 2â€ <i>tertâ€</i> Butyl‶,4â€bis[4â€pentenyloxy)benzoyl]hydroquinone Based Nematic Mainâ€Chain Liquic Crystalline Elastomers. Macromolecular Materials and Engineering, 2012, 297, 1203-1212.	1.7	3
467	Culture surface influence on T-cell phenotype and function. Clinical Hemorheology and Microcirculation, 2013, 55, 501-512.	0.9	3
468	The role of alternating current electric field for cell adhesion on 2D and 3D biomimetic scaffolds based on polymer materials and adhesive proteins. Journal of Materials Research, 2013, 28, 2180-2186.	1.2	3

#	Article	IF	CITATIONS
469	Influence of diisocyanate reactivity and water solubility on the formation and the mechanical properties of gelatin-based networks in water. Materials Research Society Symposia Proceedings, 2013, 1569, 15-20.	0.1	3
470	Photoinduced synthesis of polyester networks from methacrylate functionalized precursors: analysis of side reactions. Polymers for Advanced Technologies, 2014, 25, 1285-1292.	1.6	3
471	Crosslinking of gelatin by ring opening metathesis under aqueous conditionsâ€"an exploratory study. Polymers for Advanced Technologies, 2014, 25, 1371-1375.	1.6	3
472	Preparation of Magnetoâ€Sensitive Polymer Nanocomposite Microparticles from Copolyesterurethanes via Electrospraying. Macromolecular Symposia, 2014, 345, 66-74.	0.4	3
473	Influence of glycidylmethacrylate functional groups attached to gelatin on the formation and properties of hydrogels. Materials Research Society Symposia Proceedings, 2015, 1718, 103-108.	0.1	3
474	PEI modified biodegradable complex micelles as gene transfer vector for proliferation of ECs. Journal of Controlled Release, 2015, 213, e60.	4.8	3
475	Polymeric inserts differing in their chemical composition as substrates for dendritic cell cultivation. Clinical Hemorheology and Microcirculation, 2015, 61, 347-357.	0.9	3
476	Architectured Shape-Memory Hydrogels with Switching Segments Based on Oligo (\hat{l}_{μ} -caprolactone). MRS Advances, 2016, 1, 2011-2017.	0.5	3
477	Nanocarriers: Architecture, transport, and topical application of drugs for therapeutic use. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 1-3.	2.0	3
478	Morphological analysis of differently sized highly porous poly(ether imide) microparticles by mercury porosimetry. Polymers for Advanced Technologies, 2017, 28, 1269-1277.	1.6	3
479	High-Strain Shape-Memory Properties of Poly(Carbonate-Urea-Urethane)s Based on Aliphatic Oligocarbonates and L-Lysine Diisocyanate. MRS Advances, 2017, 2, 2529-2536.	0.5	3
480	RGD constructs with physical anchor groups as polymer co-electrospinnable cell adhesives. Polymers for Advanced Technologies, 2017, 28, 1312-1317.	1.6	3
481	Amides as Non-polymerizable Catalytic Adjuncts Enable the Ring-Opening Polymerization of Lactide With Ferrous Acetate Under Mild Conditions. Frontiers in Chemistry, 2019, 7, 346.	1.8	3
482	Relation between Surface Area and Surface Potential Change during (co)Polyesters Degradation as Langmuir Monolayer. MRS Advances, 2020, 5, 667-677.	0.5	3
483	Predictive topography impact model for Electrical Discharge Machining (EDM) of metal surfaces. MRS Advances, 2020, 5, 621-632.	0.5	3
484	Spheroid formation of human keratinocyte: Balancing between cell-substrate and cell-cell interaction. Clinical Hemorheology and Microcirculation, 2020, 76, 329-340.	0.9	3
485	Aptamer supported in vitro endothelialization of poly(ether imide) films. Clinical Hemorheology and Microcirculation, 2020, 75, 201-217.	0.9	3
486	In vitro Degradation Analysis of 3D-architectured Gelatin-based Hydrogels. MRS Advances, 2020, 5, 633-642.	0.5	3

#	Article	IF	CITATIONS
487	Soft, Formstable (Co)Polyester Blend Elastomers. Nanomaterials, 2021, 11, 1472.	1.9	3
488	Non-woven shape-memory polymer blend actuators. MRS Advances, 2021, 6, 781-785.	0.5	3
489	Functionalizable coaxial PLLA/PDLA nanofibers with stereocomplexes at the internal interface. Journal of Materials Research, 2021, 36, 2995-3009.	1.2	3
490	Multifunctionality as design principle for contact lens materials. Multifunctional Materials, 2021, 4, 042001.	2.4	3
491	Generation of 2.5D lung bud organoids from human induced pluripotent stem cells. Clinical Hemorheology and Microcirculation, 2021, 79, 217-230.	0.9	3
492	Multifunctionality in Polymer Networks by Dynamic of Coordination Bonds. Macromolecular Chemistry and Physics, 2021, 222, 2000394.	1.1	3
493	Degradable, Multifunctional Polymeric Biomaterials with Shape-Memory. Materials Science Forum, 0, , 219-224.	0.3	3
494	Analytical model and Monte Carlo simulations of polymer degradation with improved chain cut statistics. Journal of Materials Research, 2022, 37, 1093-1101.	1.2	3
495	In Vivo Performance of a Cell and Factor Free Multifunctional Fiber Mesh Modulating Postinfarct Myocardial Remodeling. Advanced Functional Materials, 2022, 32, .	7.8	3
496	Biodegradable Materials., 2011,, 469-492.		2
497	Dicarboxy-telechelic cooligomers with sequence structure tunable light absorption. Reactive and Functional Polymers, 2012, 72, 533-541.	2.0	2
498	Sustained release carrier for adenosine triphosphate as signaling molecule. Journal of Controlled Release, 2014, 195, 86-91.	4.8	2
499	A High Content Screening Assay for Evaluation of Biomaterialâ€Mediated Cell Fusion Processes. Macromolecular Symposia, 2014, 346, 91-99.	0.4	2
500	Thermomechanical Characterization of a Series of Crosslinked Poly[ethylene-co-(vinyl acetate)] (PEVA) Copolymers. Materials Research Society Symposia Proceedings, 2015, 1718, 123-130.	0.1	2
501	REDV-linked biodegradable polymeric micelles as the transfer vector of ZNF580 for the proliferation of endothelial cells. Journal of Controlled Release, 2015, 213, e123.	4.8	2
502	Encasement of metallic cardiovascular stents with endothelial cellâ€selective copolyetheresterurethane microfibers. Polymers for Advanced Technologies, 2015, 26, 1209-1216.	1.6	2
503	Influence of film thickness on the crystalline morphology of a copolyesterurethane comprising crystallizable poly(É>-caprolactone) soft segments. Clinical Hemorheology and Microcirculation, 2015, 60, 77-87.	0.9	2
504	Characterization of bi-layered magnetic nanoparticles synthesized via two-step surface-initiated ring-opening polymerization. Pure and Applied Chemistry, 2015, 87, 1085-1097.	0.9	2

#	Article	IF	Citations
505	An ellipsometric approach towards the description of inhomogeneous polymer-based Langmuir layers. Beilstein Journal of Nanotechnology, 2016, 7, 1156-1165.	1.5	2
506	Biodegradable Polymeric Materials. , 2016, , 65-96.		2
507	Programming structural functions in phase-segregated polymers by implementing a defined thermomechanical history. Polymer, 2016, 102, 54-62.	1.8	2
508	Microgels from microfluidic templating and photoinduced crosslinking of cinnamylidene acetic acid modified precursors. Reactive and Functional Polymers, 2017, 112, 68-73.	2.0	2
509	Surface geometry of poly(ether imide) boosts mouse pluripotent stem cell spontaneous cardiomyogenesis via modulating the embryoid body formation process. Clinical Hemorheology and Microcirculation, 2017, 64, 367-382.	0.9	2
510	Influence of nanoporous poly(ether imide) particle extracts on human aortic endothelial cells (HAECs). Clinical Hemorheology and Microcirculation, 2017, 64, 931-940.	0.9	2
511	Design and processing of advanced functional polymers for medicine. Polymers for Advanced Technologies, 2017, 28, 1203-1205.	1.6	2
512	Folate receptor mediated genetic modification of human mesenchymal stem cells via folic acid-polyethylenimine-grafted poly(N-3-hydroxypropyl)aspartamide. Clinical Hemorheology and Microcirculation, 2017, 67, 279-295.	0.9	2
513	pH-sensitivity and Conformation Change of the N-terminal Methacrylated Peptide VK20. MRS Advances, 2017, 2, 2571-2579.	0.5	2
514	Synthesis and Characterization of Multiblock Poly(Ester-Amide-Urethane)s. MRS Advances, 2017, 2, 2551-2559.	0.5	2
515	Modulation of the mesenchymal stem cell migration capacity via preconditioning with topographic microstructure. Clinical Hemorheology and Microcirculation, 2017, 67, 267-278.	0.9	2
516	Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology. MRS Communications, 2019, 9, 181-188.	0.8	2
517	Interfacial properties of morpholine-2,5-dione-based oligodepsipeptides and multiblock copolymers. MRS Communications, 2019, 9, 170-180.	0.8	2
518	Thiol Michael-Type Reactions of Optically Active Mercapto-Acids in Aqueous Medium. MRS Advances, 2019, 4, 2515-2525.	0.5	2
519	Substrate-enzyme affinity-based surface modification strategy for endothelial cell-specific binding under shear stress. Clinical Hemorheology and Microcirculation, 2019, 75, 1-14.	0.9	2
520	Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating. Clinical Hemorheology and Microcirculation, 2019, 70, 531-542.	0.9	2
521	AFM Assessment of the Mechanical Properties of Stem Cells During Differentiation. MRS Advances, 2020, 5, 601-607.	0.5	2
522	Solvent-based Fabrication Method for Magnetic, Shape-Memory Nanocomposite Foams. MRS Advances, 2020, 5, 785-795.	0.5	2

#	Article	IF	CITATIONS
523	Surface hydrophilization of highly porous poly(ether imide) microparticles by covalent attachment of poly(vinyl pyrrolidone). Polymer, 2020, 210, 123045.	1.8	2
524	Quantitative Model and Thin Film Studies Relating Molecular Architecture and Degradation of Multifunctional Materials. Cell Reports Physical Science, 2020, 1, 100009.	2.8	2
525	Shape-Memory Actuation of Individual Micro-/Nanofibers. MRS Advances, 2020, 5, 2391-2399.	0.5	2
526	Potential Effects of Nonadherent on Adherent Human Umbilical Venous Endothelial Cells in Cell Culture. International Journal of Molecular Sciences, 2021, 22, 1493.	1.8	2
527	Enzymatically Triggered Jack-in-the-Box-like Hydrogels. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8095-8101.	4.0	2
528	Phase Morphology of Multiblock Copolymers Differing in Sequence of Blocks. Macromolecular Materials and Engineering, 2021, 306, 2000672.	1.7	2
529	Structure, mechanical properties and degradation behavior of electrospun PEEU fiber meshes and films. MRS Advances, 2021, 6, 276-282.	0.5	2
530	Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells. MRS Communications, 2021, 11, 425-431.	0.8	2
531	Multiblock copolymers type PDC – A family of multifunctional biomaterials for regenerative medicine1. Clinical Hemorheology and Microcirculation, 2022, 80, 327-341.	0.9	2
532	Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation. MRS Communications, 2021, 11, 1-9.	0.8	2
533	Switching microobjects from low to high aspect ratios using a shape-memory effect. Soft Matter, 2021, 17, 9326-9331.	1.2	2
534	Hydrogel networks by aliphatic dithiol Michael addition to glycidylmethacrylated gelatin. MRS Advances, 2021, 6, 796-800.	0.5	2
535	Understanding the impact of crystal lamellae organization on small molecule diffusion using a Monte Carlo approach. MRS Advances, 2020, 5, 2737-2749.	0.5	2
536	On Demand Sequential Release of (Sub)Micron Particles Controlled by Size and Temperature. Small, 2022, 18, e2104621.	5.2	2
537	Multiphase Polymer Networks with Shape-Memory. Materials Research Society Symposia Proceedings, 2009, 1190, 30.	0.1	1
538	Influence of polymeric microspheres on the myocardial oxygen partial pressure in the beating heart of pigs. Microvascular Research, 2011, 82, 52-57.	1.1	1
539	Synthesis and Characterization of Gelatin Fragments Obtained by Controlled Degradation. Macromolecular Symposia, 2011, 309-310, 199-204.	0.4	1
540	Synthesis and Characterization of Polyetherimides with 3-Methoxy-1,2-propanediol Moieties. Macromolecular Symposia, 2011, 309-310, 40-48.	0.4	1

#	Article	IF	Citations
541	Shape-Memory Properties of Nanocomposites based on Poly(Ή-pentadecalactone) and Magnetic Nanoparticles. Materials Research Society Symposia Proceedings, 2012, 1403, 19.	0.1	1
542	Manufacturing and Characterization of Controlled Foaming of Single Layers in Bilayer Constructs Differing in Pore Morphology. Macromolecular Symposia, 2013, 334, 33-39.	0.4	1
543	Synthesis and Properties of Poly(<i>p</i> â€phenylene ethynylene)s with Oxidation―and Reduction―ensitive Moieties. Macromolecular Chemistry and Physics, 2013, 214, 1215-1224.	1.1	1
544	The influence of the co-monomer ratio of poly[acrylonitrile-co-(N-vinylpyrrolidone)]s on primary human monocyte-derived dendritic cells. Materials Research Society Symposia Proceedings, 2013, 1569, 21-26.	0.1	1
545	Morphology of crosslinked poly($\hat{l}\mu$ -caprolactone) microparticles. Materials Research Society Symposia Proceedings, 2013, 1569, 173-178.	0.1	1
546	ABA triblock copolymer based hydrogels with thermo-sensitivity for biomedical applications. Materials Research Society Symposia Proceedings, 2013, 1569, 135-140.	0.1	1
547	Influence of Coupling Agent on the Morphology of Multifunctional, Degradable Shape-Memory Polymers. Materials Research Society Symposia Proceedings, 2013, 1569, 57-64.	0.1	1
548	Correlating the Uptake and Dendritic Cell Activation by MDP-loaded Microparticles. Materials Research Society Symposia Proceedings, 2013, 1569, 179-184.	0.1	1
549	Effect of the Fixation Temperature <i>T</i> _{low} on the Crystallization Behavior and Shapeâ€Memory Performance of Crystallizable Copolyesterurethanes. Macromolecular Symposia, 2014, 345, 75-82.	0.4	1
550	Micellization of Aminoterminated Poly(ethylene glycol)â€ <i>block</i> â€poly(propylene) Tj ETQq0 0 0 rgBT /Ove Symposia, 2014, 345, 91-97.	erlock 10 T 0.4	f 50 387 Td (ş
551	Crystallization Behavior of Copolyesterurethanes Containing Different Weight Contents of Crystallizable Poly(<i>ε</i> i>â€caprolactone) Segments. Macromolecular Symposia, 2014, 345, 59-65.	0.4	1
552	Crystallization and Phase Segregation of Multifunctional Multiblock Copolymers in Spin Coated Thin Films Altered by Diurethane Junction Units. Macromolecular Symposia, 2014, 345, 83-90.	0.4	1
553	Purity of mushroom tyrosinase as a biocatalyst for biomaterial synthesis affects the stability of therapeutic peptides. Materials Research Society Symposia Proceedings, 2015, 1718, 85-90.	0.1	1
554	Immuno-compatibility of desaminotyrosine and desaminotyrosyl tyrosine functionalized star-shaped oligo(ethylene glycol)s with different molecular weights. Materials Research Society Symposia Proceedings, 2015, 1718, 97-102.	0.1	1
555	Robot Assisted Synthesis and Characterization of Polyester-based Polyurethanes. Materials Research Society Symposia Proceedings, 2015, 1718, 109-115.	0.1	1
556	Photo-Reversibility of Cinnamylidene Acetic Acid Derived Crosslinks in Poly(Îμ-caprolactone) Networks. Materials Research Society Symposia Proceedings, 2015, 1718, 49-54.	0.1	1
557	Advanced Functional Polymers Addressing the Needs of Modern Medicine. Macromolecular Rapid Communications, 2015, 36, 1859-1861.	2.0	1
558	Designing advanced functional polymers for medical applications. Polymers for Advanced Technologies, 2015, 26, 1357-1358.	1.6	1

#	Article	IF	CITATIONS
559	Advanced Functional Polymers in Medicine (AFPM). Clinical Hemorheology and Microcirculation, 2015, 60, 1-2.	0.9	1
560	Two phase microfluidics with inviscid drops: Effects of total flow rate and delayed surfactant addition. MRS Advances, 2016, 1, 2019-2024.	0.5	1
561	Mechanical Properties of Architectured Gelatin-Based Hydrogels on Different Hierarchical Levels. MRS Advances, 2016, 1, 1995-2001.	0.5	1
562	Comment on: "Hemocompatibility of Superhemophobic Titania Surfaces― Advanced Healthcare Materials, 2017, 6, 1700294.	3.9	1
563	Microwell Geometry Modulates Interleukin-6 Secretion in Human Mesenchymal Stem Cells. MRS Advances, 2017, 2, 2561-2570.	0.5	1
564	Effects of extracts prepared from modified porous poly(ether imide) microparticulate absorbers on cytotoxicity, macrophage differentiation and proinflammatory behavior of human monocytic (THP-1) cells. Clinical Hemorheology and Microcirculation, 2018, 69, 175-185.	0.9	1
565	Surface immobilization strategies for tyrosinase as biocatalyst applicable to polymer network synthesis. MRS Advances, 2018, 3, 3875-3881.	0.5	1
566	The predictive value of a modified Carpentier classification in patients with coincidental mitral regurgitation undergoing TAVI for severe aortic valve stenosis1. Clinical Hemorheology and Microcirculation, 2018, 70, 15-25.	0.9	1
567	Perfluorophenyl azide functionalization of electrospun poly(para â€dioxanone). Polymers for Advanced Technologies, 2019, 30, 1165-1172.	1.6	1
568	Investigating the Phase-Morphology of PLLA-PCL Multiblock Copolymer / PDLA Blends Cross-linked Using Stereocomplexation. MRS Advances, 2020, 5, 699-707.	0.5	1
569	Self-stabilized fibronectin films at the air/water interface. MRS Advances, 2020, 5, 609-620.	0.5	1
570	Fine-tuning of Rat Mesenchymal Stem Cell Senescence via Microtopography of Polymeric Substrates. MRS Advances, 2020, 5, 643-653.	0.5	1
571	The effects of oscillatory temperature on HaCaT keratinocyte behaviors. Clinical Hemorheology and Microcirculation, 2020, 76, 317-327.	0.9	1
572	Effect of Water on Crystallization and Melting of Telechelic Oligo(Îμâ€εaprolactone)s in Ultrathin Films. Advanced Materials Interfaces, 2021, 8, 2001940.	1.9	1
573	Highly crystalline PCL ultrathin films as thermally switchable biomaterial coatings. MRS Advances, 2021, 6, 283-290.	0.5	1
574	The influence of different rewetting procedures on the thrombogenicity of nanoporous poly(ether) Tj ETQq0 0	0 rgBT/Ove	erlock 10 Tf 50
575	Hydrolytic stability of polyetherimide investigated in ultrathin films. Journal of Materials Research, 2021, 36, 2987-2994.	1.2	1
576	Effect of Endothelial Culture Medium Composition on Platelet Responses to Polymeric Biomaterials. International Journal of Molecular Sciences, 2021, 22, 7006.	1.8	1

#	Article	IF	Citations
577	Reaction behaviour of peptide-based single thiol-thioesters exchange reaction substrate in the presence of externally added thiols. MRS Communications, 2021, 11, 402-410.	0.8	1
578	Cellular response of blood-borne immune cells to PEEU fiber meshes. Clinical Hemorheology and Microcirculation, 2021, 79, 205-216.	0.9	1
579	Shape-Memory Polymers Designed in View of Thermomechanical Energy Storage and Conversion Systems. ACS Central Science, 2021, 7, 1599-1601.	5.3	1
580	The Nature of the Thermal Transition Influences the Shape-Memory Behavior of Polymer Networks. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 131-156.	0.5	1
581	Chapter 12. Intelligent Materials: Shape-Memory Polymers. , 2007, , 301-316.		1
582	Thermomechanical Characterizations of Shape-Memory Polymers (Dual/Triple-Shape) and Modeling Approaches., 2010,, 91-107.		1
583	Thin-layer studies on surface functionalization of polyetherimide: Hydrolysis versus amidation. Journal of Materials Research, 2022, 37, 67-76.	1.2	1
584	An Inverse Shapeâ€Memory Hydrogel Scaffold Switching Upon Cooling in a Tissueâ€Tolerated Temperature Range. Advanced Materials Interfaces, 2022, 9, .	1.9	1
585	Design and fabrication of fiber mesh actuators. Applied Materials Today, 2022, 29, 101562.	2.3	1
586	Layer-by-Layer Deposition of Polyelectrolytes â€" A Versatile Tool for the in vivo Repair of Blood Vessels ChemInform, 2004, 35, no.	0.1	0
587	Ability to Control the Glass Transition Temperature of Amorphous Shape-Memory Polyesterurethane Networks by Varying Prepolymers in Molecular Mass as well as in Type and Content of Incorporated Comonomers. Materials Research Society Symposia Proceedings, 2009, 1190, 45.	0.1	O
588	Abbaubare Polymere in der Medizin. Nachrichten Aus Der Chemie, 2011, 59, 117-120.	0.0	0
589	Polymers in the Berlin–Brandenburg Region: A Brief Review on the History on the Occasion of the 20th Anniversary of the German Reunification. Macromolecular Chemistry and Physics, 2011, 212, 753-757.	1.1	0
590	Introduction to Advanced Polymers in Medicine. Macromolecular Symposia, 2011, 309-310, 1-5.	0.4	0
591	Synthesis and Characterization of a Telechelic Peptide as a Precursor for Supramolecular Networks. Macromolecular Symposia, 2011, 309-310, 205-212.	0.4	0
592	Thermal Gelation and Stability of Pectin Grafted with PEPE. Materials Research Society Symposia Proceedings, 2012, 1403, 226.	0.1	0
593	Triple-Shape Effect of Copolymer Networks Based on Poly(ω-pentadecalactone) and Poly(ε†caprolactone) Segments Applying a Programming Procedure with an Adjusted Temperature Profile. Materials Research Society Symposia Proceedings, 2012, 1403, 43.	0.1	0
594	Synthesis and Characterization of Poly(p-phenylene ethynylene)s with nitroxyl radical endgroups. Materials Research Society Symposia Proceedings, 2012, 1403, 183.	0.1	0

#	Article	IF	Citations
595	Phase Transition Behavior of Main Chain Nematic Liquid-Crystalline Polymers Based on 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone and 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone. Materials Research Society Symposia Proceedings, 2012, 1403, 79.	0.1	О
596	Modeling of Free Radical Polymerization of Azobenzene-based Linear Polymers. Materials Research Society Symposia Proceedings, 2012, 1403, 1.	0.1	0
597	Biomimetic Hemo-compatible Surfaces of Polyurethane by Grafting Copolymer Brushes of Poly(ethylene glycol) and Poly(phosphorylcholine methacrylate). Materials Research Society Symposia Proceedings, 2012, 1403, 220.	0.1	0
598	Quantifying Protein Adsorption to Physically Crosslinked Gelatin-Based Networks. Materials Research Society Symposia Proceedings, 2012, 1403, 196.	0.1	0
599	Synthesis and Characterization of Telechelic Oligoethers with Terminal Cinnamylidene Acetic Acid Moieties. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 185-190.	0.7	0
600	Synthesis and Characterization of Hydroxy-telechelic Four-arm Star-shaped Oligo(tetrahydrofuran), Their Crosslinking, and Thermomechanical Investigation of the Poymer Network. Materials Research Society Symposia Proceedings, 2012, 1403, 190.	0.1	0
601	A NiTi alloy-based cuff for external banding valvuloplasty: a six-week follow-up study in pigs. Phlebology, 2012, 27, 337-346.	0.6	0
602	Using Mass Spectrometry to Investigate the Structural Features of Photocrosslinked Co-Networks based on Gelatin and Poly(ethylene glycol) Methacrylates. Materials Research Society Symposia Proceedings, 2012, 1403, 13.	0.1	0
603	Degradation of and angiogenesis around multiblock copolymers containing poly(p-dioxanone)-and poly($\hat{\mu}$ -caprolactone)-segments subcutaneously implanted in the rat neck s. Clinical Hemorheology and Microcirculation, 2012, 50, 153-153.	0.9	0
604	Local drug delivery by personalized, intraoperative customâ€made implant coating. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 950-963.	1.6	0
605	Viability and function of primary human endothelial cells on smooth poly (ether imide) films. Clinical Hemorheology and Microcirculation, 2013, 55, 281-281.	0.9	0
606	Comparison of memory effects in multiblock copolymers and covalently crosslinked multiphase polymer networks composed of the same types of oligoester segments and urethane linker. Materials Research Society Symposia Proceedings, 2013, 1569, 123-128.	0.1	0
607	Quantification of Protein Adsorption on Polyglycerol-based Polymer Network Films. Materials Research Society Symposia Proceedings, 2013, 1569, 79-84.	0.1	0
608	Biodegradable Materials., 2013,, 529-556.		0
609	Advanced Functional Polymers for Medicine. Macromolecular Bioscience, 2013, 13, 1639-1639.	2.1	0
610	Synthetic Polymer-Network Based Materials in Stem Cell Research. , 2013, , 3-36.		0
611	Impact of Molecular Architectures on the Thermal and Mechanical Properties of Multi-Phase Polymer Networks. Macromolecular Symposia, 2014, 346, 82-90.	0.4	0
612	Double Layer Porous Structures by an Injection Molding/Particulate Leaching Approach. Macromolecular Symposia, 2014, 346, 100-107.	0.4	0

#	Article	IF	Citations
613	From macromolecules to materials to systems. Polymers for Advanced Technologies, 2014, 25, 1187-1188.	1.6	O
614	Anisotropic Composites of Desaminotyrosine and Desaminotyrosyl Tyrosine Functionalized Gelatin and Bioactive Glass Microparticles. Materials Research Society Symposia Proceedings, 2015, 1718, 9-14.	0.1	0
615	Poly(n-butylcyanoacrylate) Nanoparticles as Carriers for Adenosine triphosphate. Materials Research Society Symposia Proceedings, 2015, 1718, 131-136.	0.1	O
616	A double-layer patch design for local and controlled drug delivery as an intraoperative custom-made implant-coating technology. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 0-0.	0.7	0
617	Secondary Structure of Decorin-Derived Peptides in Solution. MRS Advances, 2016, 1, 1965-1970.	0.5	0
618	Transparent Substrates Prepared From Different Amorphous Polymers Can Directly Modulate Primary Human B cell functions. Biotechnology Journal, 2017, 12, 1700334.	1.8	0
619	Controlling surface properties and permeability of polyglycerol network films. Polymers for Advanced Technologies, 2017, 28, 1263-1268.	1.6	0
620	Investigating the Roles of Crystallizable and Glassy Switching Segments within Multiblock Copolymer Shape-Memory Materials. MRS Advances, 2018, 3, 3741-3749.	0.5	0
621	Polyethyleneimine and Poly(ethylene glycol) Functionalized Oligoester Based Polycationic Particles. MRS Advances, 2018, 3, 3033-3040.	0.5	0
622	Shape-Memory Polymer Medical Devices. , 2019, , 394-405.		0
623	Shape-Memory Polymers. Polymers and Polymeric Composites, 2019, , 1-59.	0.6	O
624	Microscopic analysis of shape-shiftable oligo (Îμ-caprolactone) â€" based particles. MRS Advances, 2019, 4, 3199-3206.	0.5	0
625	The interplay between network morphology and degradation kinetics of polymers: Theoretical and experimental analysis by means of a 2D model system. MRS Advances, 2020, 5, 679-691.	0.5	0
626	Modulation of Mesenchymal Stem Cell Migration using Programmable Polymer Sheet Actuators. MRS Advances, 2020, 5, 2381-2390.	0.5	0
627	Thin hydrogel coatings formation catalyzed by immobilized enzyme horseradish peroxidase. MRS Advances, 2020, 5, 773-783.	0.5	0
628	Formulation of drug-loaded oligodepsipeptide particles with submicron size. Clinical Hemorheology and Microcirculation, 2021, 77, 201-219.	0.9	0
629	Semiâ€Crystalline Oligomers: Effect of Water on Crystallization and Melting of Telechelic Oligo(εâ€caprolactone)s in Ultrathin Films (Adv. Mater. Interfaces 7/2021). Advanced Materials Interfaces, 2021, 8, 2170035.	1.9	0
630	Ethylene oxide sterilization of electrospun poly(l-lactide)/poly(d-lactide) core/shell nanofibers. MRS Advances, 0 , 1 .	0.5	0

#	Article	IF	CITATIONS
631	Degradation kinetics of oligo (lµ-caprolactone) ultrathin films: Influence of crystallinity. MRS Advances, 0, , 1.	0.5	O
632	Cooligomers from morpholine-2,5-dione and para-dioxanone and catalyst complex SnOct2/2-hydroxyethyl sulfide. MRS Advances, 2021, 6, 764-768.	0.5	0
633	Bio-inspired and computer-supported design of modulated shape changes in polymer materials. MRS Communications, 2021, 11, 462-469.	0.8	O
634	Size control of shape switchable micronetworks by fast two-step microfluidic templating. Journal of Materials Research, 2021, 36, 3248-3257.	1.2	0
635	Defeating antibiotic-resistant bacteria with protein-resistant polyGGE film. Clinical Hemorheology and Microcirculation, 2021, , 1-15.	0.9	O
636	Influence of sterilization conditions on sulfate-functionalized polyGGE. Clinical Hemorheology and Microcirculation, 2021, 79, 597-608.	0.9	0
637	The response of humanÂinduced pluripotent stem cells to cyclic temperature changes explored by BIO-AFM. MRS Advances, 2021, 6, 745.	0.5	0
638	Prediction of the epichlorohydrin derived cytotoxic substances from the eluent of poly(glycerol) Tj ETQq0 0 0 rg	BT <i> </i> Oyerlo	ck 10 Tf 50 4
639	Crystallization and degradation behaviour of multiblock copolyester blends in Langmuir monolayers. MRS Communications, $2021, 11, 850-855$.	0.8	0
640	Computational modeling of anionic and zwitterionic lipid bilayers for investigating surface activities of bioactive molecules. , 2008, , .		0
641	Materials Science Aspects of Bone Fracture and Regeneration. IFMBE Proceedings, 2009, , 259-259.	0.2	O
642	Results of Biocompatibility Testing of Novel, Multifunctional Polymeric Implant Materials In-Vitro and In-Vivo. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 285-300.	0.5	0
643	Actuators Based on Oligo[(Îμ-caprolactone)-co-glycolide] with Accelerated Hydrolytic Degradation. MRS Advances, 2020, 5, 655-666.	0.5	0
644	Functional requirements for polymeric implant materials in head and neck surgery. Clinical Hemorheology and Microcirculation, 2020, 76, 179-189.	0.9	0
645	Co-delivery of genes can be confounded by bicistronic vector design. MRS Communications, 2022, 12, 1-9.	0.8	0
646	Ultrathin collagen type I films formed at the air-water interface. MRS Advances, 2022, 7, 56-62.	0.5	0