
Martin Sjödin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life cycle assessment of an all-organic battery: Hotspots and opportunities for improvement. Journal of Cleaner Production, 2022, 337, 130454.	4.6	7
2	Characterization of a porphyrin-functionalized conducting polymer: A first step towards sustainable electrocatalysis. Electrochimica Acta, 2022, 424, 140616.	2.6	4
3	Conjugated redox polymer with poly(3,4-ethylenedioxythiophene) backbone and hydroquinone pendant groups as the solid contact in potassium-selective electrodes. Sensors and Actuators B: Chemical, 2021, 329, 129231.	4.0	14
4	An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble Conducting Polymer Precursors – A Case Study for Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 5349-5356.	4.0	11
5	Rocking-Chair Proton Batteries with Conducting Redox Polymer Active Materials and Protic Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 19099-19108.	4.0	27
6	Potential-tuning in quinone-pyrrole dyad-based conducting redox polymers. Electrochimica Acta, 2021, 389, 138758.	2.6	1
7	A conducting additive-free high potential quinone-based conducting redox polymer as lithium ion battery cathode. Electrochimica Acta, 2021, 391, 138901.	2.6	6
8	Multifunctional metal-free rechargeable polymer composite nanoparticles boosted by CO2. Materials Today Sustainability, 2020, 10, 100048.	1.9	0
9	Conducting Redox Polymer as Organic Anode Material for Polymerâ€Manganese Secondary Batteries. ChemElectroChem, 2020, 7, 3336-3340.	1.7	17
10	A crosslinked conducting polymer with well-defined proton trap function for reversible proton cycling in aprotic environments. Journal of Materials Chemistry A, 2020, 8, 12114-12123.	5.2	5
11	Effect of Cycling Ion and Solvent on the Redox Chemistry of Substituted Quinones and Solvent-Induced Breakdown of the Correlation between Redox Potential and Electron-Withdrawing Power of Substituents. Journal of Physical Chemistry C, 2020, 124, 13609-13617.	1.5	22
12	An Aqueous Conducting Redoxâ€Polymerâ€Based Proton Battery that Can Withstand Rapid Constantâ€Voltage Charging and Subâ€Zero Temperatures. Angewandte Chemie, 2020, 132, 9718-9725.	1.6	18
13	An Aqueous Conducting Redoxâ€Polymerâ€Based Proton Battery that Can Withstand Rapid Constantâ€Voltage Charging and Subâ€Zero Temperatures. Angewandte Chemie - International Edition, 2020, 59, 9631-9638.	7.2	80
14	Proton-coupled electron transfer from an interfacial phenol monolayer. Journal of Electroanalytical Chemistry, 2020, 859, 113856.	1.9	2
15	Conducting Redox Polymer as a Robust Organic Electrodeâ€Active Material in Acidic Aqueous Electrolyte towards Polymer–Air Secondary Batteries. ChemSusChem, 2020, 13, 2280-2285.	3.6	25
16	Reprint of "Proton-coupled electron transfer from an interfacial phenol monolayer". Journal of Electroanalytical Chemistry, 2020, 875, 114760.	1.9	0
17	Characterization of PEDOT-Quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries. Electrochemistry Communications, 2019, 105, 106489.	2.3	30
18	Structural Changes of Mercaptohexanol Self-Assembled Monolayers on Gold and Their Influence on Impedimetric Aptamer Sensors. Analytical Chemistry, 2019, 91, 14697-14704.	3.2	52

Martin Sjödin

#	Article	IF	CITATIONS
19	Redox-State-Dependent Interplay between Pendant Group and Conducting Polymer Backbone in Quinone-Based Conducting Redox Polymers for Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7162-7170.	2.5	17
20	In situ Investigations of a Proton Trap Material: A PEDOT-Based Copolymer with Hydroquinone and Pyridine Side Groups Having Robust Cyclability in Organic Electrolytes and Ionic Liquids. ACS Applied Energy Materials, 2019, 2, 4486-4495.	2.5	15
21	Investigating electron transport in a PEDOT/Quinone conducting redox polymer with in situ methods. Electrochimica Acta, 2019, 308, 277-284.	2.6	28
22	Identifying the tuning key of disproportionation redox reaction in terephthalate: A Li-based anode for sustainable organic batteries. Nano Energy, 2018, 47, 301-308.	8.2	17
23	Nonstoichiometric Triazolium Protic Ionic Liquids for All-Organic Batteries. ACS Applied Energy Materials, 2018, 1, 6451-6462.	2.5	31
24	(Keynote) Conducting Redox Polymer Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
25	Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. Journal of Materials Chemistry A, 2017, 5, 4430-4454.	5.2	61
26	Polaron Disproportionation Charge Transport in a Conducting Redox Polymer. Journal of Physical Chemistry C, 2017, 121, 13078-13083.	1.5	11
27	Synthesis and characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on backbone/pendant interactions in a conducting redox polymer. Physical Chemistry Chemical Physics, 2017, 19, 10427-10435.	1.3	7
28	Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries. Electrochimica Acta, 2017, 235, 356-364.	2.6	54
29	An All-Organic Proton Battery. Journal of the American Chemical Society, 2017, 139, 4828-4834.	6.6	194
30	Assessing the electrochemical properties of polypyridine and polythiophene for prospective applications in sustainable organic batteries. Physical Chemistry Chemical Physics, 2017, 19, 3307-3314.	1.3	15
31	Conducting redox polymers with non-activated charge transport properties. Physical Chemistry Chemical Physics, 2017, 19, 25052-25058.	1.3	11
32	The Proton Trap Technology—Toward High Potential Quinoneâ€Based Organic Energy Storage. Advanced Energy Materials, 2017, 7, 1700259.	10.2	20
33	Hydroquinone–pyrrole dyads with varied linkers. Beilstein Journal of Organic Chemistry, 2016, 12, 89-96.	1.3	3
34	A versatile route to polythiophenes with functional pendant groups using alkyne chemistry. Beilstein Journal of Organic Chemistry, 2016, 12, 2682-2688.	1.3	11
35	Stable Deep Doping of Vaporâ€Phase Polymerized Poly(3,4â€ethylenedioxythiophene)/lonic Liquid Supercapacitors. ChemSusChem, 2016, 9, 2112-2121.	3.6	30
36	Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers. Electrochimica Acta, 2016, 222, 149-155.	2.6	7

Martin Sjödin

#	Article	IF	CITATIONS
37	Conducting Redox Polymer Based Anode Materials for High Power Electrical Energy Storage. Electrochimica Acta, 2016, 204, 270-275.	2.6	25
38	Enthalpic versus Entropic Contribution to the Quinone Formal Potential in a Polypyrrole-Based Conducting Redox Polymer. Journal of Physical Chemistry C, 2016, 120, 21178-21183.	1.5	17
39	Ion- and Electron Transport in Pyrrole/Quinone Conducting Redox Polymers Investigated by In Situ Conductivity Methods. Electrochimica Acta, 2015, 179, 336-342.	2.6	37
40	Synthesis and Redox Properties of Thiophene Terephthalate Building Blocks for Low-Potential Conducting Redox Polymers. Journal of Physical Chemistry C, 2015, 119, 27247-27254.	1.5	11
41	Matching Diethyl Terephthalate with n-Doped Conducting Polymers. Journal of Physical Chemistry C, 2015, 119, 18956-18963.	1.5	21
42	Impact of linker in polypyrrole/quinone conducting redox polymers. RSC Advances, 2015, 5, 11309-11316.	1.7	31
43	Self-discharge in positively charged polypyrrole–cellulose composite electrodes. Electrochemistry Communications, 2015, 50, 43-46.	2.3	19
44	Self-discharge Reactions in Energy Storage Devices Based on Polypyrrole-cellulose Composite Electrodes. Green, 2014, 4, .	0.4	9
45	Activation Barriers Provide Insight into the Mechanism of Self-Discharge in Polypyrrole. Journal of Physical Chemistry C, 2014, 118, 29643-29649.	1.5	17
46	Quinone pendant group kinetics in poly(pyrrol-3-ylhydroquinone). Journal of Electroanalytical Chemistry, 2014, 735, 95-98.	1.9	25
47	Conjugated Pyridine-Based Polymers Characterized as Conductivity Carrying Components in Anode Materials. Journal of Physical Chemistry C, 2014, 118, 25956-25963.	1.5	19
48	Probing Polymer–Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone). Journal of Physical Chemistry C, 2014, 118, 23499-23508.	1.5	29
49	Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions. Journal of Physical Chemistry C, 2013, 117, 23558-23567.	1.5	38
50	Investigation of the Redox Chemistry of Isoindole-4,7-diones. Journal of Physical Chemistry C, 2013, 117, 894-901.	1.5	26
51	Computational Electrochemistry Study of 16 Isoindole-4,7-diones as Candidates for Organic Cathode Materials. Journal of Physical Chemistry C, 2012, 116, 3793-3801.	1.5	43
52	Paperâ€Based Energyâ€Storage Devices Comprising Carbon Fiberâ€Reinforced Polypyrroleâ€Cladophora Nanocellulose Composite Electrodes. Advanced Energy Materials, 2012, 2, 445-454.	10.2	154
53	Proton-Coupled Electron Transfer of Tyrosine Oxidation:  Buffer Dependence and Parallel Mechanisms. Journal of the American Chemical Society, 2007, 129, 15462-15464.	6.6	193
54	Switching the Redox Mechanism:Â Models for Proton-Coupled Electron Transfer from Tyrosine and Tryptophan. Journal of the American Chemical Society, 2005, 127, 3855-3863.	6.6	224

#	Article	IF	CITATIONS
55	Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms. Physical Chemistry Chemical Physics, 2004, 6, 4851-4858.	1.3	72
56	The mechanism for proton–coupled electron transfer from tyrosine in a model complex and comparisons with Y Z oxidation in photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1471-1479.	1.8	54
57	Proton-Coupled Electron Transfer from Tyrosine in a Tyrosineâ^'Rutheniumâ^'tris-Bipyridine Complex:Â Comparison with TyrosineZOxidation in Photosystem II. Journal of the American Chemical Society, 2000, 122, 3932-3936.	6.6	262