K. M. Faridul Hasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156949/publications.pdf Version: 2024-02-01

K M FADIDIII HASAN

#	Article	IF	CITATIONS
1	High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 7589-7599.	6.7	154
2	Potential Natural Fiber Polymeric Nanobiocomposites: A Review. Polymers, 2020, 12, 1072.	4.5	154
3	Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of Materials Science, 2021, 56, 7231-7264.	3.7	122
4	A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances, 2021, 11, 10548-10571.	3.6	78
5	New insight into the mechanism for the excellent gas properties of poly(ethylene) Tj ETQq1 1 0.784314 rgBT /C 642-650.	verlock 10 5.4	0 Tf 50 587 Td 76
6	A Novel Coloration of Polyester Fabric through Green Silver Nanoparticles (G-AgNPs@PET). Nanomaterials, 2019, 9, 569.	4.1	74
7	Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chinese Journal of Chemical Engineering, 2020, 28, 1334-1343.	3.5	73
8	Multifunctional organic cotton fabric based on silver nanoparticles green synthesized from sodium alginate. Textile Reseach Journal, 2020, 90, 1224-1236.	2.2	60
9	Surface Functionalization of "Rajshahi Silk―Using Green Silver Nanoparticles. Fibers, 2017, 5, 35.	4.0	53
10	Biobased Amorphous Polyesters with High <i>T</i> _g : Trade-Off between Rigid and Flexible Cyclic Diols. ACS Sustainable Chemistry and Engineering, 2019, 7, 6401-6411.	6.7	53
11	Coloration of aramid fabric via in-situ biosynthesis of silver nanoparticles with enhanced antibacterial effect. Inorganic Chemistry Communication, 2020, 119, 108115.	3.9	53
12	Wool functionalization through AgNPs: coloration, antibacterial and wastewater treatment. Surface Innovations, 2021, 9, 25-36.	2.3	53
13	Colorful and antibacterial nylon fabric via in-situ biosynthesis of chitosan mediated nanosilver. Journal of Materials Research and Technology, 2020, 9, 16135-16145.	5.8	53
14	Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Scientific Reports, 2021, 11, 3618.	3.3	47
15	In situ synthesis of green AgNPs on ramie fabric with functional and catalytic properties. Emerging Materials Research, 2019, 8, 623-633.	0.7	45
16	Lignocellulosic Fiber Cement Compatibility: A State of the Art Review. Journal of Natural Fibers, 2022, 19, 5409-5434.	3.1	44
17	Potential fabric-reinforced composites: a comprehensive review. Journal of Materials Science, 2021, 56, 14381-14415.	3.7	44
18	Konjac glucomannan reduced-stabilized silver nanoparticles for mono-azo and di-azo contained wastewater treatment. Inorganica Chimica Acta, 2021, 515, 120058.	2.4	40

K. M. Faridul Hasan

#	Article	IF	CITATIONS
19	Effect of thermosonication treatment on blueberry juice quality: Total phenolics, flavonoids, anthocyanin, and antioxidant activity. LWT - Food Science and Technology, 2021, 150, 112021.	5.2	39
20	Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. Journal of Applied Polymer Science, 2019, 136, 48221.	2.6	30
21	Thermomechanical Behavior of Methylene Diphenyl Diisocyanate-Bonded Flax/Glass Woven Fabric Reinforced Laminated Composites. ACS Omega, 2021, 6, 6124-6133.	3.5	30
22	Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites. Cellulose, 2021, 28, 7859-7875.	4.9	30
23	Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology. Cellulose, 2021, 28, 3631-3645.	4.9	26
24	Novel fibrin functionalized multilayered electrospun nanofiber membrane for burn wound treatment. Journal of Materials Science, 2021, 56, 12814-12834.	3.7	25
25	Coloration of woven glass fabric using biosynthesized silver nanoparticles from Fraxinus excelsior tree flower. Inorganic Chemistry Communication, 2021, 126, 108477.	3.9	24
26	Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites. Journal of Polymer Research, 2021, 28, 1.	2.4	24
27	Gold/Konjac glucomannan bionanocomposites for catalytic degradation of mono-azo and di-azo dyes. Inorganic Chemistry Communication, 2020, 120, 108156.	3.9	20
28	Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract. Composite Interfaces, 2022, 29, 503-521.	2.3	20
29	One-pot green synthesis of Ag@AgCl nanoparticles with excellent photocatalytic performance. Surface Innovations, 2021, 9, 277-284.	2.3	20
30	Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels. Construction and Building Materials, 2021, 305, 124816.	7.2	19
31	Electrospun PVDF-Ag@AgCl porous fiber membrane: stable antifoul and antibacterial surface. Surface Innovations, 2021, 9, 156-165.	2.3	18
32	Thermomechanical characteristics of flax-woven-fabric-reinforced poly(lactic acid) and polypropylene biocomposites. Green Materials, 2022, 10, 1-10.	2.1	18
33	UV Protection and Antibacterial Treatment of Wool using Green Silver Nanoparticles. Asian Journal of Chemistry, 2018, 30, 116-122.	0.3	17
34	Enhancing mechanical and antibacterial performances of organic cotton materials with greenly synthesized colored silver nanoparticles. International Journal of Clothing Science and Technology, 2022, 34, 549-565.	1.1	16
35	Nucleation and crystallization of poly(propylene 2,5-furan dicarboxylate) by direct blending of microcrystalline cellulose: improved tensile and barrier properties. Cellulose, 2020, 27, 9423-9436.	4.9	13
36	The Consequence of Epoxidized Soybean Oil in the Toughening of Polylactide and Micro-Fibrillated Cellulose Blend. Polymer Science - Series A, 2019, 61, 832-846.	1.0	11

K. M. Faridul Hasan

#	Article	IF	CITATIONS
37	Waste Cellulose Fibers Reinforced Polylactide Toughened by Direct Blending of Epoxidized Soybean Oil. Fibers and Polymers, 2020, 21, 2949-2961.	2.1	11
38	Macadamia integrifolia: A New Source of Natural Dyes for Textile Colouration. Asian Journal of Chemistry, 2017, 29, 1543-1548.	0.3	10
39	Fully Bio-based Micro-cellulose Incorporated Poly(butylene 2,5-furandicarboxylate) Transparent Composites: Preparation and Characterization. Fibers and Polymers, 2020, 21, 1550-1559.	2.1	10
40	Design and Fabrication Technology in Biocomposite Manufacturing. , 2021, , 157-188.		10
41	Green synthesis of glycerol monostearate-modified cationic waterborne polyurethane. Emerging Materials Research, 2019, 8, 137-147.	0.7	9
42	Introduction to Biomass and Biocomposites. , 2021, , 1-33.		9
43	Application of Gelatin Composite Coating in Pork Quality Preservation during Storage and Mechanism of Gelatin Composite Coating on Pork Flavor. Gels, 2022, 8, 21.	4.5	9
44	Green synthesis of nanosilver using <i>Fomes fomentarius</i> mushroom extract over aramid fabrics with improved coloration effects. Textile Reseach Journal, 2022, 92, 3567-3578.	2.2	8
45	Colorful and facile in situ nanosilver coating on sisal/cotton interwoven fabrics mediated from European larch heartwood. Scientific Reports, 2021, 11, 22397.	3.3	7
46	Nanotechnology for waste wood recycling. , 2022, , 61-80.		6
47	Coloration of flax woven fabrics using <i>Taxus baccata</i> heartwoodâ€mediated nanosilver. Coloration Technology, 2022, 138, 146-156.	1.5	5
48	Silk protein and its nanocomposites. , 2021, , 309-323.		5
49	Screening of enzyme-producing strains from traditional Guizhou condiment. Biotechnology and Biotechnological Equipment, 2021, 35, 264-275.	1.3	5
50	Immunological regulation, effects, extraction mechanisms, healthy utilization, and bioactivity of edible fungi: A comprehensive review. Journal of Food Process Engineering, 2022, 45, .	2.9	4
51	Nanomaterial-based smart and sustainable protective textiles. , 2022, , 75-111.		4
52	Semi-dry technology mediated lignocellulosic coconut and energy reed straw reinforced cementitious insulation panels. Journal of Building Engineering, 2022, 57, 104825.	3.4	4
53	Nanosilver coating on hemp/cotton blended woven fabrics mediated from mammoth pine bark with improved coloration and mechanical properties. Journal of the Textile Institute, 2022, 113, 2641-2650.	1.9	3
54	Industrial Flame Retardants for Polyurethanes. ACS Symposium Series, 0, , 239-264.	0.5	3

#	Article	IF	CITATIONS
55	Construction of anti-counterfeiting pattern on the cellulose film by in-situ regulation strategies. Cellulose, 2022, 29, 7751-7760.	4.9	3