Arramel Arramel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156588/publications.pdf

Version: 2024-02-01

61 1,535 19
papers citations h-index

64 64 64 2310 all docs docs citations times ranked citing authors

38

g-index

#	Article	IF	CITATIONS
1	Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. IScience, 2022, 25, 103753.	1.9	9
2	Temperature-induced orbital polarizations and tunable charge dynamics in layered double perovskite thin films. Materials Today Energy, 2022, 24, 100921.	2.5	5
3	Metal-insulator transition switching in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>VO</mml:mi>heterojunctions. Physical Review Materials, 2022, 6, .</mml:mrow></mml:msub></mml:math 	ຠ เ @.‰> <mi< td=""><td>mkmi>x</td></mi<>	m k mi>x
4	MBE-grown ultrathin PtTe ₂ films and their layer-dependent electronic structures. Nanoscale, 2022, 14, 7650-7658.	2.8	7
5	BA ₂ XBr ₄ (X = Pb, Cu, Sn): from lead to lead-free halide perovskite scintillators. Materials Advances, 2022, 3, 5087-5095.	2.6	16
6	Low-Dimensional Porous Carbon Networks Using Single-/Triple-Coupling Polycyclic Hydrocarbon Precursors. ACS Nano, 2022, 16, 9843-9851.	7.3	3
7	Realâ€6pace Investigation of the Multiple Halogen Bonds by Ultrahighâ€Resolution Scanning Probe Microscopy. Small, 2022, 18, .	5.2	7
8	Photodetection and scintillation characterizations of novel lead-bismuth double perovskite halides. Journal of Materials Chemistry C, 2022, 10, 11266-11275.	2.7	7
9	Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals. Journal of Materials Chemistry C, 2021, 9, 2504-2512.	2.7	46
10	MXenes: An Emerging Platform for Wearable Electronics and Looking Beyond. Matter, 2021, 4, 377-407.	5.0	125
11	Atomic-Scale Superlubricity in Ti ₂ CO ₂ @MoS ₂ Layered Heterojunctions Interface: A First Principles Calculation Study. ACS Omega, 2021, 6, 9013-9019.	1.6	16
12	SCREENING EFFECTS AT ORGANIC–2D MATERIAL HETEROINTERFACES. Surface Review and Letters, 2021, 28, 2140008.	0.5	0
13	Highly Sensitive and Selective Gas Sensor Using Heteroatom Doping Graphdiyne: A DFT Study. Advanced Electronic Materials, 2021, 7, 2001244.	2.6	37
14	Electronic and Optical Modulation of Pine Tree-like Nanostructures of Gallium Nitride. Journal of Physical Chemistry C, 2021, 125, 13917-13924.	1.5	1
15	Understanding the Mechanism of PbCl ₂ Additive for MAPbl ₃ â€Based Perovskite Solar Cells. Advanced Photonics Research, 2021, 2, 2100012.	1.7	4
16	Ligand size effects in two-dimensional hybrid copper halide perovskites crystals. Communications Materials, 2021, 2, .	2.9	12
17	ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES. Surface Review and Letters, 2021, 28, 2140010.	0.5	1
18	FORWARD: MOLECULAR INTERACTIONS ON TWO-DIMENSIONAL MATERIALS. Surface Review and Letters, 2021, 28, 2102001.	0.5	0

#	Article	IF	CITATIONS
19	Diverse Structures and Magnetic Properties in Nonlayered Monolayer Chromium Selenide. Journal of Physical Chemistry Letters, 2021, 12, 7752-7760.	2.1	28
20	Precise Layerâ€Dependent Electronic Structure of MBEâ€Grown PtSe ₂ . Advanced Electronic Materials, 2021, 7, 2100559.	2.6	16
21	Onâ€Surface Synthesis of Variable Bandgap Nanoporous Graphene. Small, 2021, 17, e2102246.	5.2	11
22	Double Transition Metal Carbides MXenes (D-MXenes) as Promising Electrocatalysts for Hydrogen Reduction Reaction: <i>Ab Initio</i> Calculations. ACS Omega, 2021, 6, 23676-23682.	1.6	14
23	Scintillation in (C ₆ H ₅ CH ₂ NH ₃) ₂ SnBr ₄ : green-emitting lead-free perovskite halide materials. RSC Advances, 2021, 11, 20635-20640.	1.7	13
24	Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 24195-24214.	5.2	41
25	Screening Effects at Organic–2D Material Heterointerfaces. , 2021, , 203-239.		0
26	Electronic and Optical Modification of Organic-hybrid Perovskites., 2021,, 333-377.		0
27	Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakes. Applied Surface Science, 2020, 506, 144672.	3.1	37
28	Electronic Modulation in Site-Selective Occupation of Quasi-2D Triangular-Lattice Cs ₂ CuCl _{4–⟨i⟩x⟨ i⟩⟨ sub⟩Br⟨sub⟩⟨i⟩x⟨ i⟩⟨ sub⟩ Perovskite Probed by Surface-Sensitive Characterization. ACS Applied Materials & Surfaces, 2020, 12, 4114-4122.}	4.0	13
29	Optical and x–ray scintillation properties of X ₂ MnCl ₄ (X = PEA, PPA) perovskite crystals. Journal Physics D: Applied Physics, 2020, 53, 455303.	1.3	17
30	Single-Metal Atoms Supported on MBenes for Robust Electrochemical Hydrogen Evolution. ACS Applied Materials & District Supported on MBenes for Robust Electrochemical Hydrogen Evolution. ACS Applied Materials & District Support Sup	4.0	70
31	Molecular functionalization of all-inorganic perovskite CsPbBr ₃ thin films. Journal of Materials Chemistry C, 2020, 8, 12587-12598.	2.7	3
32	Electronic and Optical Modulation of Metal-Doped Hybrid Organic–Inorganic Perovskites Crystals by Post-Treatment Control. ACS Applied Energy Materials, 2020, 3, 7500-7511.	2.5	10
33	Atomic-Level Electronic Properties of Carbon Nitride Monolayers. ACS Nano, 2020, 14, 14008-14016.	7.3	22
34	Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Research, 2020, 13, 3439-3444.	5.8	47
35	Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Communications Materials, 2020, 1 , .	2.9	88
36	Spin Correlated-Plasmons at Room Temperature Driven by Electronic Correlations in Lead-Free 2D Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2020, 124, 14272-14278.	1.5	5

#	Article	IF	CITATIONS
37	Synthesis and characterization of CIGS/ZnO film by spin coating method for solar cell application. AIP Conference Proceedings, 2020, , .	0.3	4
38	Synthesis and characterization of CIGS ink by hot injection method. AIP Conference Proceedings, 2020,	0.3	2
39	Built-in electric field-assisted step-scheme heterojunction of carbon nitride-copper oxide for highly selective electrochemical detection of p-nonylphenol. Electrochimica Acta, 2020, 354, 136658.	2.6	26
40	Thermally Induced Chiral Aggregation of Dihydrobenzopyrenone on Au(111). ACS Applied Materials & Lamp; Interfaces, 2020, 12, 35547-35554.	4.0	7
41	Core–shell hybrid zeolitic imidazolate framework-derived hierarchical carbon for capacitive deionization. Journal of Materials Chemistry A, 2020, 8, 14653-14660.	5 . 2	41
42	Water robustness of organic thin-film transistors based on pyrazino[2,3- <i>g</i>]quinoxaline-dione conjugated polymer. Journal of Materials Chemistry C, 2020, 8, 4157-4163.	2.7	4
43	Performance Improvement by Ozone Treatment of 2D PdSe ₂ . ACS Nano, 2020, 14, 5668-5677.	7.3	54
44	Ion-doped two-dimensional perovskite crystals for versatile radiation detection (Conference) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 462
45	Design of perovskite photonic crystals for emission control. Journal of Physics: Conference Series, 2019, 1170, 012003.	0.3	2
46	Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundaries. Nature Communications, 2019, 10, 2847.	5.8	26
47	Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators. Crystals, 2019, 9, 88.	1.0	150
48	Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Research, 2019, 12, 77-84.	5.8	16
49	The Growth of ZnO Nanorods on Stainless-steel foils and Its Application for Piezoelectric Nanogenerator. Journal of Physics: Conference Series, 2018, 1093, 012004.	0.3	4
50	Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hot asting Method under Ambient Conditions. Advanced Energy Materials, 2018, 8, 1802051.	10.2	84
51	Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano, 2018, 12, 7445-7481.	7.3	225
52	Molecular Alignment and Electronic Structure of <i>N</i> , <i>N</i> ,ê> N	4.0	19
53	Spectroscopic Contrast of Diarylethene Molecules on Octanethiol Monolayer. Makara Journal of Technology, 2017, 21, 75.	0.4	0
54	Towards molecular doping effect on the electronic properties of two-dimensional layered materials. Journal of Physics: Conference Series, 2016, 739, 012014.	0.3	2

#	Article	IF	CITATIONS
55	Topographic and Electronic Properties of 3,4,9,10-Perylene Tetra Carboxylic Dianhydride (PTCDA) on Indium Tin Oxide (ITO) Surface. Advanced Materials Research, 2015, 1112, 110-115.	0.3	0
56	Reversible light induced conductance switching of asymmetric diarylethenes on gold: surface and electronic studies. Nanoscale, 2013, 5, 9277.	2.8	36
57	Band Gap Opening of Graphene by Noncovalent π-π Interaction with Porphyrins. Graphene, 2013, 02, 102-108.	0.3	18
58	Electronic properties of individual diarylethene molecules studied using scanning tunneling spectroscopy. Journal of Applied Physics, 2012, 111, .	1.1	9
59	Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy. Small, 2012, 8, 1607-1613.	5.2	53
60	Magnetodielectric coupling by exchange striction in Y2Cu2O5. European Physical Journal B, 2009, 71, 393-399.	0.6	20
61	Realizing Two-Dimensional Supramolecular Arrays of a Spin Molecule via Halogen Bonding. ACS Nanoscience Au, 0, , .	2.0	0