
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156507/publications.pdf Version: 2024-02-01

RADRADA MII7

#	Article	IF	CITATIONS
1	Localized Delivery of Cisplatin to Cervical Cancer Improves Its Therapeutic Efficacy and Minimizes Its Side Effect Profile. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1483-1494.	0.4	37
2	Synthesis and Characterisation of a Boron-Rich Symmetric Triazine Bearing a Hypoxia-Targeting Nitroimidazole Moiety. Symmetry, 2021, 13, 202.	1.1	0
3	Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy. Leukemia, 2021, 35, 2346-2357.	3.3	28
4	3D tissue engineered plasma cultures support leukemic proliferation and induces drug resistance. Leukemia and Lymphoma, 2021, 62, 1-9.	0.6	5
5	Nanoparticle T cell engagers for the treatment of acute myeloid leukemia. Oncotarget, 2021, 12, 1878-1885.	0.8	8
6	A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma. Scientific Reports, 2021, 11, 19343.	1.6	6
7	Targeting E-selectin to Tackle Cancer Using Uproleselan. Cancers, 2021, 13, 335.	1.7	30
8	3D Tissue-Engineered Bone Marrow Culture Predicts Patient Response to Drugs in Multiple Myeloma. Blood, 2021, 138, 2690-2690.	0.6	0
9	CXCR4-targeted PET imaging using ⁶⁴ Cu-AMD3100 for detection of Waldenström Macroglobulinemia. Cancer Biology and Therapy, 2020, 21, 52-60.	1.5	6
10	Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nature Communications, 2020, 11, 6037.	5.8	51
11	Targeting CD47 as a Novel Immunotherapy for Multiple Myeloma. Cancers, 2020, 12, 305.	1.7	56
12	Biomaterials for cancer immunotherapy. , 2020, , 499-526.		5
13	Abstract A27: Endothelial progenitor cells as drug-delivery Trojan horses for treatment and imaging of cancer. , 2020, , .		0
14	Abstract PR06: Targeting CD47 as a novel immunotherapy for multiple myeloma. , 2020, , .		0
15	Abstract 2613: Integrin beta-3 signaling links chemoresistance and mitochondrial metabolism in breast cancer bone metastases. , 2020, , .		0
16	Abstract B01: Nanoparticle multispecific T-cell engagers for the treatment of multiple myeloma. , 2020, , .		1
17	Inhibition of HIF-1a By PX-478 Normalizes Blood Vessels, Improves Drug Delivery and Suppresses Progression and Dissemination in Multiple Myeloma. Blood, 2020, 136, 3-3.	0.6	3
18	Thermal Sensitive Liposomes Improve Delivery of Boronated Agents for Boron Neutron Capture Therapy. Pharmaceutical Research, 2019, 36, 144.	1.7	26

#	Article	IF	CITATIONS
19	Inhibition of CD47 as a Novel Cancer Immunotherapy for Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e153-e154.	0.2	0
20	A Short and Convenient Synthesis of <i> closo</i> â€Dodecaborate Sugar Conjugates. European Journal of Organic Chemistry, 2019, 2019, 7228-7232.	1.2	17
21	Inhibition of E-Selectin (GMI-1271) or E-selectin together with CXCR4 (GMI-1359) re-sensitizes multiple myeloma to therapy. Blood Cancer Journal, 2019, 9, 68.	2.8	18
22	PYK2/FAK inhibitors reverse hypoxia-induced drug resistance in multiple myeloma. Haematologica, 2019, 104, e310-e313.	1.7	10
23	Nanoparticle Multi-Specific T cell Engagers for the Treatment of Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e156.	0.2	0
24	Endothelial Progenitor Cells as Drug Delivery Trojan Horses for Theranostic Use in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e95.	0.2	0
25	Injectable Hydrogels for Localized Chemotherapy and Radiotherapy in Brain Tumors. Journal of Pharmaceutical Sciences, 2018, 107, 922-933.	1.6	35
26	Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma. Journal of Controlled Release, 2018, 270, 158-176.	4.8	49
27	Label-free hypoxia measurement in a xenograft multiple myeloma model using optical-resolution photoacoustic microscopy (Conference Presentation). , 2018, , .		0
28	3D-Tissue Engineered Bone Marrow (3DTEBM) Culture Retrospectively Predicts Treatment Clinical Outcomes of Multiple Myeloma Patients. Blood, 2018, 132, 1987-1987.	0.6	0
29	Overcoming Drug Resistance in Myeloma By Synchronized Delivery of Therapeutic and Bone Marrow Disrupting Agents By Nanoparticles Targeting Tumor-Associated Endothelium. Blood, 2018, 132, 1931-1931.	0.6	0
30	Direct measurement of hypoxia in a xenograft multiple myeloma model by optical-resolution photoacoustic microscopy. Cancer Biology and Therapy, 2017, 18, 101-105.	1.5	18
31	Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leukemia and Lymphoma, 2017, 58, 2916-2925.	0.6	30
32	Selinexor Overcomes Hypoxia-Induced Drug Resistance in Multiple Myeloma. Translational Oncology, 2017, 10, 632-640.	1.7	26
33	Abstract 5005: Inhibition of E-selectin or E-selectin together with CXCR4 resensitizes multiple myeloma to treatment. , 2017, , .		1
34	Spotlight on ixazomib: potential in the treatment of multiple myeloma. Drug Design, Development and Therapy, 2016, 10, 217.	2.0	69
35	A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma. Pharmaceutical Research, 2016, 33, 2530-2539.	1.7	16
36	A <scp>CD</scp> 138â€independent strategy to detect minimal residual disease and circulating tumour cells in multiple myeloma. British Journal of Haematology, 2016, 173, 70-81.	1.2	20

#	Article	IF	CITATIONS
37	Newly established myeloma-derived stromal cell line MSP-1 supports multiple myeloma proliferation, migration, and adhesion and induces drug resistance more than normal-derived stroma. Haematologica, 2016, 101, e307-e311.	1.7	11
38	Tris DBA palladium overcomes hypoxia-mediated drug resistance in multiple myeloma. Leukemia and Lymphoma, 2016, 57, 1677-1686.	0.6	20
39	Anti-CD38 Targeted Nanoparticles for Drug Delivery in Multiple Myeloma. Blood, 2016, 128, 2135-2135.	0.6	4
40	Novel Flow Cytometry-Based Biomarkers Predict Recurrence in Myeloma Patients through Detection of MRD in the Bone Marrow and CTCs in Peripheral Blood. Blood, 2016, 128, 2076-2076.	0.6	0
41	The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, N Z), 2015, 3, 83.	1.9	1,372
42	Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib. BioMed Research International, 2015, 2015, 1-8.	0.9	27
43	Hypoxia Promotes Dissemination and Colonization in New Bone Marrow Niches in Waldenström Macroglobulinemia. Molecular Cancer Research, 2015, 13, 263-272.	1.5	23
44	Identification of ILK as a novel therapeutic target for acute and chronic myeloid leukemia. Leukemia Research, 2015, 39, 1299-1308.	0.4	15
45	3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials, 2015, 73, 70-84.	5.7	120
46	Abstract 5356: 3D tissue-engineered bone marrow niche as novel method to study pathophysiology and drug resistance in multiple myeloma. Cancer Research, 2015, 75, 5356-5356.	0.4	1
47	Hypoxia Induces Pgp-Mediated Carfilzomib Resistance in Multiple Myeloma Cells and HIF Inhibition Significantly Enhances Sensitivity and Response to Carfilzomib In Vivo. Blood, 2015, 126, 1286-1286.	0.6	1
48	Tirapazamine As a Strategy to Overcome Hypoxia-Induced Drug Resistance in Multiple Myeloma. Blood, 2015, 126, 4436-4436.	0.6	2
49	Abstract 5305: Predicting relapse using CD138-independent strategy to detect residual myeloma plasma cells. , 2015, , .		0
50	Abstract 5468: Tirapazamine as a strategy to prevent cell dissemination and overcome drug resistance. , 2015, , .		0
51	Novel Method to Detect Minimal Residual Disease in Multiple Myeloma Predicts Recurrence Better Than CD138-Based Models. Blood, 2015, 126, 2985-2985.	0.6	0
52	Tris DBA Palladium Overcomes Hypoxia Mediated Drug Resistance in Multiple Myeloma. Blood, 2015, 126, 2978-2978.	0.6	0
53	Selinexor Is an Effective Cancer Treatment in Hypoxic Conditions and Synergizes with Proteasome Inhibitors to Treat Drug Resistant Multiple Myeloma. Blood, 2015, 126, 3017-3017.	0.6	0
54	The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting. Laboratory Investigation, 2014, 94, 881-892.	1.7	17

#	Article	IF	CITATIONS
55	The Role of Hypoxia and Exploitation of the Hypoxic Environment in Hematologic Malignancies. Molecular Cancer Research, 2014, 12, 1347-1354.	1.5	50
56	Molecularly Targeted Therapies in Multiple Myeloma. Leukemia Research and Treatment, 2014, 2014, 1-8.	2.0	43
57	PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. British Journal of Haematology, 2014, 165, 89-101.	1.2	34
58	Patient-Derived 3D Tissue-Engineered Bone Marrow Cultures Support Primary MM Growth. Blood, 2014, 124, 4705-4705.	0.6	0
59	PYK2 Inhibitors Sensitize Hypoxia-Induced Drug Resistant Multiple Myeloma Cell. Blood, 2014, 124, 4704-4704.	0.6	0
60	CD138-Independent Strategy for Detecting Residual and Circulating Myeloma Plasma Cells. Blood, 2014, 124, 2077-2077.	0.6	0
61	3D Tissue-Engineered Bone Marrow Cultures Induce Drug Resistance, De-Differentiation and Cytokine Expression Changes in Multiple Myeloma. Blood, 2014, 124, 2069-2069.	0.6	0
62	Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Proteasome Inhibitors. Blood, 2014, 124, 4758-4758.	0.6	0
63	Cell Trafficking of Endothelial Progenitor Cells in Tumor Progression. Clinical Cancer Research, 2013, 19, 3360-3368.	3.2	104
64	Autologous 3D Tissue-Engineered Bone Marrow For Drug Screening In MM Patients. Blood, 2013, 122, 132-132.	0.6	1
65	Tumor Hypoxia Promotes Dissemination and Tumor Colonization In Waldenström Macroglobulinemia. Blood, 2013, 122, 3011-3011.	0.6	1
66	PI3K-Alpha Plays A Major Role In Multiple Myeloma and Its Inhibition With BYL917 Decreases Proliferation, Synergizes With Other Therapies and Overcomes Stroma-Induced Resistance. Blood, 2013, 122, 3215-3215.	0.6	1
67	Hypoxia Induces Drug Resistance In Multiple Myeloma. Blood, 2013, 122, 1852-1852.	0.6	2
68	Prolyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritis. Arthritis and Rheumatism, 2012, 64, 2856-2867.	6.7	29
69	Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA. Arthritis Research and Therapy, 2012, 14, R180.	1.6	41
70	The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Research and Therapy, 2009, 11, 201.	1.6	99