
Sigurdur Ingvarsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-451 suppresses tumor cell growth by down-regulating IL6R gene expression. Cancer Epidemiology, 2014, 38, 85-92.	0.8	45
2	The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nature Cell Biology, 2012, 14, 201-208.	4.6	77
3	Demethylation of the region around exon 2 of MLH1 gene in gastrointestinal cancer. Anticancer Research, 2012, 32, 4861-4.	0.5	3
4	Spreading of Alu Methylation to the Promoter of the MLH1 Gene in Gastrointestinal Cancer. PLoS ONE, 2011, 6, e25913.	1.1	12
5	Quantitative Analysis of miRNA Expression in Seven Human Foetal and Adult Organs. PLoS ONE, 2011, 6, e28730.	1.1	25
6	The MLH1 â^'93 promoter variant influences gene expression. Cancer Epidemiology, 2010, 34, 93-95.	0.8	16
7	Quantitative analysis of miRNA expression in several developmental stages of human livers. Hepatology Research, 2010, 40, 813-822.	1.8	21
8	Identification of miRNAs in a Liver of a Human Fetus by a Modified Method. PLoS ONE, 2009, 4, e7594.	1.1	12
9	In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence. Acta Veterinaria Scandinavica, 2008, 50, 44.	0.5	14
10	Duplicated Sequence Motif in the Long Terminal Repeat of Maedi-Visna Virus Extends Cell Tropism and Is Associated with Neurovirulence. Journal of Virology, 2007, 81, 4052-4057.	1.5	39
11	Genomic Instability and Breast Cancer Progression. Cancer Genomics and Proteomics, 2006, 3, 137-146.	1.0	0
12	Loss of RALT/MIG-6 expression in ERBB2-amplified breast carcinomas enhances ErbB-2 oncogenic potency and favors resistance to Herceptin. Oncogene, 2005, 24, 4540-4548.	2.6	111
13	Deletions at the chromosome 3 common eliminated region 1 on 3p21.3 in human breast tumors. Breast Cancer Research, 2005, 7, 1.	2.2	0
14	Tumor Suppressor Genes on Human Chromosome 3 and Cancer Pathogenesis. Cancer Genomics and Proteomics, 2005, 2, 247-253.	1.0	0
15	Interstitial deletions including chromosome 3 common eliminated region 1 (C3CER1) prevail in human solid tumors from 10 different tissues. Genes Chromosomes and Cancer, 2004, 41, 232-242.	1.5	23
16	Genetics of breast cancer. Drugs of Today, 2004, 40, 991.	2.4	9
17	Molecular Genetics of Breast Cancer. International Journal of Human Genetics, 2003, 3, 69-78.	0.1	1
18	Mutation analysis of the CHK2 gene in breast carcinoma and other cancers. Breast Cancer Research, 2002, 4, R4.	2.2	46

2

#	Article	IF	CITATIONS
19	High frequency of LOH, MSI and abnormal expression of FHIT in gastric cancer. European Journal of Cancer, 2002, 38, 728-735.	1.3	49
20	Loss of heterozygosity at the FHIT gene in different solid human tumours and its association with survival in colorectal cancer patients. Anticancer Research, 2002, 22, 3205-12.	0.5	11
21	FHIT alterations in breast cancer. Seminars in Cancer Biology, 2001, 11, 361-366.	4.3	22
22	Alterations of E-cadherin and \hat{l}^2 -catenin in gastric cancer. BMC Cancer, 2001, 1, 16.	1.1	53
23	Similar regions of human chromosome 3 are eliminated from or retained in human/human and human/mouse microcell hybrids during tumor growth in severe combined immunodeficient (SCID) mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1136-1141.	3.3	29
24	Chromosome 8p alterations in sporadic and BRCA2 999del5 linked breast cancer. Journal of Medical Genetics, 2000, 37, 342-347.	1.5	31
25	Altered expression of E-cadherin in breast cancer. European Journal of Cancer, 2000, 36, 1098-1106.	1.3	90
26	Analysis of the fragile histidine triad (FHIT) gene in lobular breast cancer. European Journal of Cancer, 2000, 36, 1552-1557.	1.3	22
27	Population Studies and Validation of Paternity Determinations by Six Microsatellite Loci. Journal of Forensic Sciences, 2000, 45, 692-695.	0.9	8
28	Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival. British Journal of Cancer, 1999, 79, 1468-1474.	2.9	150
29	Chromosome alterations and E-cadherin gene mutations in human lobular breast cancer. British Journal of Cancer, 1999, 81, 1103-1110.	2.9	97
30	Molecular genetics of breast cancer progression. Seminars in Cancer Biology, 1999, 9, 277-288.	4.3	85
31	Altered expression of E-cadherin in breast cancer: patterns, mechanisms and clinical significance. European Journal of Cancer, 1999, 35, S90.	1.3	1
32	Replication error in human breast cancer: comparison with clinical variables and family history of cancer. Oncology Reports, 1999, 6, 117-22.	1.2	11
33	Reduced Fhit expression in sporadic and BRCA2-linked breast carcinomas. Cancer Research, 1999, 59, 2682-9.	0.4	39
34	Replication error in colorectal carcinoma: association with loss of heterozygosity at mismatch repair loci and clinicopathological variables. Anticancer Research, 1999, 19, 1821-6.	0.5	33
35	High incidence of loss of heterozygosity at chromosome 17p13 in breast tumours from BRCA2 mutation carriers. Oncogene, 1998, 16, 21-26.	2.6	31
36	Identification of a novel splice-site mutation of the BRCA1 gene in two breast cancer families: Screening reveals low frequency in Icelandic breast cancer patients. Human Mutation, 1998, 11, S195-S197.	1.1	30

#	Article	IF	CITATIONS
37	Chromosome imbalance at the 3p14 region in human breast tumours: High frequency in patients with inherited predisposition due to BRCA2. European Journal of Cancer, 1998, 34, 142-147.	1.3	17
38	Mapping loss of heterozygosity at chromosome 13q: loss at 13q12-q13 is associated with breast tumour progression and poor prognosis. European Journal of Cancer, 1998, 34, 2076-2081.	1.3	83
39	High frequency of LOH at chromosome 18q in human breast cancer: association with high S-phase fraction and low progesterone receptor content. Anticancer Research, 1998, 18, 1031-6.	0.5	9
40	High incidence of loss of heterozygosity in breast tumors from carriers of the BRCA2 999del5 mutation. Cancer Research, 1998, 58, 4421-5.	0.4	12
41	Loss of heterozygosity at chromosome 7q in human breast cancer: association with clinical variables. Anticancer Research, 1997, 17, 93-8.	0.5	18
42	Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Research, 1997, 57, 1222-7.	0.4	275
43	"Elimination test†Solid tumor progression model based on the nonrandom changes of human chromosome 3 in monochromosomal microcell hybrid. Cancer Genetics and Cytogenetics, 1996, 91, 185.	1.0	0
44	Loss of heterozygosity on chromosome arm 3p in nasopharyngeal carcinoma. , 1996, 17, 118-126.		48
45	Loss of heterozygosity at chromosome 1p in human breast cancer. International Journal of Oncology, 1996, 9, 731-6.	1.4	2
46	Frequent occurrence of BRCA2 linkage in Icelandic breast cancer families and segregation of a common BRCA2 haplotype. American Journal of Human Genetics, 1996, 58, 749-56.	2.6	46
47	High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients. Cancer Research, 1996, 56, 3663-5.	0.4	157
48	Loss of heterozygosity at chromosome 11 in breast cancer: association of prognostic factors with genetic alterations. British Journal of Cancer, 1995, 72, 696-701.	2.9	84
49	High frequency of allelic imbalance at chromosome region 16q22-23 in human breast cancer: Correlation with high pgr and low s phase. International Journal of Cancer, 1995, 64, 112-116.	2.3	44
50	Loss of heterozygosity on chromosome 9 in human breast cancer: Association with clinical variables and genetic changes at other chromosome regions. International Journal of Cancer, 1995, 64, 378-382.	2.3	36
51	Linkage analysis and allelic imbalance in human breast cancer kindreds using microsatellite markers from the short arm of chromosome 3. Human Genetics, 1995, 96, 437-43.	1.8	25
52	LOSS OF HETEROZYGOSITY AT CHROMOSOME 6Q CORRELATES WITH TUMOR PROGRESSION AND PATIENT SURVIVAL. International Journal of Oncology, 1995, 7, 871-6.	1.4	1
53	MAPPING OF CHROMOSOME-3 ALTERATIONS IN HUMAN BREAST-CANCER USING MICROSATELLITE PCR MARKERS - CORRELATION WITH CLINICAL-VARIABLES. International Journal of Oncology, 1995, 6, 369-75.	1.4	4
54	Identification of a breast tumor with microsatellite instability in a potential carrier of the hereditary nonâ€polyposis colon cancer trait. Clinical Genetics, 1995, 47, 305-310.	1.0	14

#	Article	IF	CITATIONS
55	Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12-q13. Cancer Research, 1995, 55, 4830-2.	0.4	128
56	The v-erbA Oncoprotein of the AEV Transforming Retrovirus Binds to the Promoter Region of the Erythroid-specific Band 3 Gene. Annals of the New York Academy of Sciences, 1994, 724, 426-429.	1.8	0
57	Urinary system tumours in a family. European Journal of Cancer, 1993, 29, 2335-2336.	1.3	2
58	Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse, and rat genomes. Genomics, 1991, 10, 1061-1069.	1.3	84
59	The most frequently lost allelic site in human renal cell carcinoma (D3F15S2) on the short arm of chromosome 3 has homologous sequences on rat chromosome 8. Cytogenetic and Genome Research, 1991, 57, 149-150.	0.6	4
60	Chromosomal assignment of five cancer-associated rat genes: two thyroid hormone receptor (ERBA) genes, two ERBB genes and the retinoblastoma gene. Oncogene, 1991, 6, 1319-24.	2.6	12
61	Differences in C-myc andpvt-1 amplification in sewa sarcoma sublines selected for adherent or non-adherent growth. International Journal of Cancer, 1990, 45, 514-520.	2.3	12
62	A gene near the D3F15S2 site on 3p is expressed in normal human kidney but not or only at a severely reduced level in 11 of 15 primary renal cell carcinomas (RCC). Oncogene, 1990, 5, 1207-11.	2.6	26
63	Nucleotide sequence of the rat Bmyc gene. Oncogene, 1989, 4, 1523-7.	2.6	13
64	Ratc-raf oncogene is located on chromosome 4 and may be activated by sequences from chromosome 13. Somatic Cell and Molecular Genetics, 1988, 14, 401-405.	0.7	11
65	Amplification of c-myc and pvt-1 homologous sequences in acute nonlymphatic leukemia. Leukemia Research, 1988, 12, 523-527.	0.4	26
66	Drosophila homolog of the murine Int-1 protooncogene Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3034-3038.	3.3	15
67	Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1571-1575.	3.3	301
68	Structure and expression of B-myc, a new member of the myc gene family Molecular and Cellular Biology, 1988, 8, 3168-3174.	1.1	63
69	Structure and Expression of B- <i>myc</i> , a New Member of the <i>myc</i> Gene Family. Molecular and Cellular Biology, 1988, 8, 3168-3174.	1.1	20
70	Chromosome localization and expression pattern of Lmyc and Bmyc in murine embryonal carcinoma cells. Oncogene, 1988, 3, 679-85.	2.6	13
71	Elevated expression of c-myc and N-myc produces distinct changes in nuclear fine structure and chromatin organization. Oncogene, 1988, 3, 587-93.	2.6	8
72	Similarities and differences in the regulation of N-myc and c-myc genes in murine embryonal carcinoma cells. Experimental Cell Research, 1987, 172, 304-317.	1.2	22

#	Article	IF	CITATIONS
73	The rat MIS1/ <i>Pvt-1</i> locus is syntenic with MYC on chromosome 7. Cytogenetic and Genome Research, 1987, 45, 174-176.	0.6	4
74	Specific polypeptide differences in normal versus malignant human breast tissues by two-dimensional electrophoresis. Breast Cancer Research and Treatment, 1987, 10, 177-189.	1.1	20
75	Mapping ofLmyc andNmyc to rat chromosomes 5 and 6. Somatic Cell and Molecular Genetics, 1987, 13, 335-339.	0.7	13
76	Multiple chromosomal rearrangements in a spontaneously arising t(6;7) rat immunocytoma juxtapose c-myc and immunoglobulin heavy chain sequences Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7376-7380.	3.3	25
77	Gene localization on sorted chromosomes: definitive evidence on the relative positioning of genes participating in the mouse plasmacytoma-associated typical translocation Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6975-6979.	3.3	18
78	Isoenzyme pattern and subcellular localization of hexokinases in human breast cancer and nonpathological breast tissue. International Journal of Cancer, 1984, 34, 63-66.	2.3	16