## Ignacio Moreno-Villoslada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156338/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The effect of chitosan-modified gold nanoparticles in Lemna valdiviana and Daphnia pulex. Gold<br>Bulletin, 2022, 55, 77.                                                                                                                                                | 2.4 | 1         |
| 2  | Self-Healing Polymer Nanocomposite Materials by Joule Effect. Polymers, 2021, 13, 649.                                                                                                                                                                                   | 4.5 | 38        |
| 3  | Maleimide Self-Reaction in Furan/Maleimide-Based Reversibly Crosslinked Polyketones: Processing<br>Limitation or Potential Advantage?. Molecules, 2021, 26, 2230.                                                                                                        | 3.8 | 19        |
| 4  | Porous polyelectrolyte materials with controlled luminescence properties based on<br>aromaticâ€aromatic interactions with rhodamine B. Polymers for Advanced Technologies, 2021, 32, 2781.                                                                               | 3.2 | 2         |
| 5  | The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on<br>aromatic-aromatic drug-polymer interactions. European Journal of Pharmaceutics and<br>Biopharmaceutics, 2021, 166, 19-29.                                                   | 4.3 | 5         |
| 6  | Concentration Dependent Single Chain Properties of Poly(sodium 4-styrenesulfonate) Subjected to<br>Aromatic Interactions with Chlorpheniramine Maleate Studied by Diafiltration and<br>Synchrotron-SAXS. Polymers, 2021, 13, 3563.                                       | 4.5 | 0         |
| 7  | Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide<br>Filament to Produce Biocompatible Composites. Polymers, 2021, 13, 3806.                                                                                                   | 4.5 | 11        |
| 8  | Electroactive Self-Healing Shape Memory Polymer Composites Based on Diels–Alder Chemistry. ACS<br>Applied Polymer Materials, 2021, 3, 6147-6156.                                                                                                                         | 4.4 | 19        |
| 9  | Diels-Alder-based thermo-reversibly crosslinked polymers: Interplay of crosslinking density, network mobility, kinetics and stereoisomerism. European Polymer Journal, 2020, 135, 109882.                                                                                | 5.4 | 32        |
| 10 | pH-Responsive Polyketone/5,10,15,20-Tetrakis-(Sulfonatophenyl)Porphyrin Supramolecular Submicron<br>Colloidal Structures. Polymers, 2020, 12, 2017.                                                                                                                      | 4.5 | 3         |
| 11 | Mechanical properties and electrical surface charges of microfibrillated<br>cellulose/imidazole-modified polyketone composite membranes. Polymer Testing, 2020, 89, 106710.                                                                                              | 4.8 | 3         |
| 12 | Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green<br>Methodology to Obtain Sponges with Biomedical Potential. Nanomaterials, 2019, 9, 944.                                                                                        | 4.1 | 14        |
| 13 | Fibrous Materials Made of Poly(ε-caprolactone)/Poly(ethylene oxide)-b-Poly(ε-caprolactone) Blends<br>Support Neural Stem Cells Differentiation. Polymers, 2019, 11, 1621.                                                                                                | 4.5 | 14        |
| 14 | Synthesis of tuneable amphiphilic-modified polyketone polymers, their complexes with 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin, and their role in the photooxidation of 1,3,5-triphenylformazan confined in polymeric nanoparticles. Polymer, 2019, 167, 215-223. | 3.8 | 11        |
| 15 | A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight<br>Drugs: A Green Strategy Providing a Very High Drug Loading. Molecular Pharmaceutics, 2019, 16,<br>2892-2901.                                                           | 4.6 | 16        |
| 16 | On the comparison between diafiltration and isothermal titration calorimetry: Determination of the amount of analytes bound to water-soluble polymers. Polymer Testing, 2019, 76, 443-447.                                                                               | 4.8 | 1         |
| 17 | Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds.<br>Polymers, 2019, 11, 1885.                                                                                                                                              | 4.5 | 32        |
| 18 | Totally Organic Redox-Active pH-Sensitive Nanoparticles Stabilized by Amphiphilic Aromatic<br>Polvketones. Journal of Physical Chemistry B. 2018, 122, 1747-1755.                                                                                                        | 2.6 | 12        |

| #  | Article                                                                                                                                                                                                                                                               | IF         | CITATIONS             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|
| 19 | Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological<br>properties toward wound healing. Journal of Biomedical Materials Research - Part B Applied<br>Biomaterials, 2018, 106, 2464-2471.                                   | 3.4        | 34                    |
| 20 | Chitosan/chondroitin sulfate aerogels with high polymeric electroneutralization degree: formation and mechanical properties. Pure and Applied Chemistry, 2018, 90, 901-911.                                                                                           | 1.9        | 8                     |
| 21 | Protection of astaxanthin from photodegradation by its inclusion in hierarchically assembled nano and microstructures with potential as food. Food Hydrocolloids, 2018, 83, 36-44.                                                                                    | 10.7       | 30                    |
| 22 | A simple and green methodology to assemble poly(4-vinylpyridine) and a sulfonated azo-dye for obtaining stable polymeric nanoparticles. Polymer, 2018, 158, 289-296.                                                                                                  | 3.8        | 5                     |
| 23 | Electrically-Responsive Reversible Polyketone/MWCNT Network through Diels-Alder Chemistry.<br>Polymers, 2018, 10, 1076.                                                                                                                                               | 4.5        | 19                    |
| 24 | A mechanistic approach for the optimization of loperamide loaded nanocarriers characterization:<br>Diafiltration and mathematical modeling advantages. European Journal of Pharmaceutical Sciences,<br>2018, 125, 215-222.                                            | 4.0        | 11                    |
| 25 | Antibacterial activity against <i>Staphylococcus aureus</i> of chitosan/chondroitin sulfate<br>nanocomplex aerogels alone and enriched with erythromycin and elephant garlic ( <i>Allium) Tj ETQq1 1 0.78431</i>                                                      | 4 ng®T /Ov | ve <b>dø</b> ck 10 Tf |
| 26 | Water-Induced Phase Transition in Cyclohexane/n-Hexanol/Triton X-100 Mixtures at a Molar<br>Composition of 1/16/74 Studied by NMR. Journal of Physical Chemistry B, 2017, 121, 876-882.                                                                               | 2.6        | 11                    |
| 27 | Aerogels containing 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin with controlled state of aggregation. Dyes and Pigments, 2017, 139, 193-200.                                                                                                                    | 3.7        | 14                    |
| 28 | Aggregation Number in Water/n-Hexanol Molecular Clusters Formed in Cyclohexane at Different<br>Water/n-Hexanol/Cyclohexane Compositions Calculated by Titration 1H NMR. Journal of Physical<br>Chemistry B, 2017, 121, 10285-10291.                                   | 2.6        | 5                     |
| 29 | Photodynamic action of methylene blue subjected to aromatic-aromatic interactions with poly(sodium 4-styrenesulfonate) in solution and supported in solid, highly porous alginate sponges. Dyes and Pigments, 2017, 147, 455-464.                                     | 3.7        | 20                    |
| 30 | Dispersion of the Photosensitizer 5,10,15,20-Tetrakis(4-Sulfonatophenyl)-porphyrin by the Amphiphilic<br>Polymer Poly(vinylpirrolidone) in Highly Porous Solid Materials Designed for Photodynamic Therapy.<br>Journal of Physical Chemistry B, 2017, 121, 7373-7381. | 2.6        | 4                     |
| 31 | Relevance of charge balance and hyaluronic acid on alginateâ€chitosan sponge microstructure and its<br>influence on fibroblast growth. Journal of Biomedical Materials Research - Part A, 2016, 104, 2537-2543.                                                       | 4.0        | 13                    |
| 32 | Facile Formation of Redoxâ€Active Totally Organic Nanoparticles in Water by In Situ Reduction of<br>Organic Precursors Stabilized through Aromatic–Aromatic Interactions by Aromatic<br>Polyelectrolytes. Macromolecular Rapid Communications, 2016, 37, 1729-1734.   | 3.9        | 9                     |
| 33 | New insights into the nature of the Cibacron brilliant red 3B-A – Chitosan interaction. Pure and Applied Chemistry, 2016, 88, 891-904.                                                                                                                                | 1.9        | 7                     |
| 34 | Correlation between 1H NMR chemical shifts of hydroxyl protons in n-hexanol/cyclohexane and molecular association properties investigated using density functional theory. Chemical Physics Letters, 2016, 644, 276-279.                                              | 2.6        | 9                     |
| 35 | Stability of Water/Poly(ethylene oxide)43-b-poly(ε-caprolactone)14/Cyclohexanone Emulsions Involves<br>Water Exchange between the Core and the Bulk. Journal of Physical Chemistry B, 2015, 119, 15929-15937.                                                         | 2.6        | 4                     |
| 36 | A Simple Mathematical Model for Wound Closure Evaluation. The Journal of the American College of<br>Clinical Wound Specialists, 2015, 7, 40-49.                                                                                                                       | 0.1        | 11                    |

| #  | Article                                                                                                                                                                                                                            | IF                | CITATIONS         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 37 | Novel polyketones with pendant imidazolium groups as nanodispersants of hydrophobic antibiotics.<br>Journal of Applied Polymer Science, 2015, 132, .                                                                               | 2.6               | 11                |
| 38 | Association Efficiency of Three Ionic Forms of Oxytetracycline to Cationic and Anionic Oil-In-Water Nanoemulsions Analyzed by Diafiltration. Journal of Pharmaceutical Sciences, 2015, 104, 1141-1152.                             | 3.3               | 16                |
| 39 | Photochromic Solid Materials Based on Poly(decylviologen) Complexed with Alginate and Poly(sodium 4-styrenesulfonate). Journal of Physical Chemistry B, 2015, 119, 13208-13217.                                                    | 2.6               | 14                |
| 40 | Self-association of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin tuned by poly(decylviologen) and sulfobutylether-β-cyclodextrin. Dyes and Pigments, 2015, 112, 262-273.                                                      | 3.7               | 15                |
| 41 | Nanoparticles for the Treatment of Wounds. Current Pharmaceutical Design, 2015, 21, 4329-4341.                                                                                                                                     | 1.9               | 67                |
| 42 | n-Hexanol association in cyclohexane studied by NMR and NIR spectroscopies. Journal of Molecular<br>Liquids, 2014, 199, 301-308.                                                                                                   | 4.9               | 11                |
| 43 | Immobilization of Hydrophilic Low Molecular-Weight Molecules in Nanoparticles of<br>Chitosan/Poly(sodium 4-styrenesulfonate) Assisted by Aromatic–Aromatic Interactions. Journal of<br>Physical Chemistry B, 2014, 118, 9782-9791. | 2.6               | 25                |
| 44 | Immobilization of rhodamine 6G in calcium alginate microcapsules based on aromatic–aromatic<br>interactions with poly(sodium 4-styrenesulfonate). Reactive and Functional Polymers, 2014, 81, 14-21.                               | 4.1               | 15                |
| 45 | Confinement of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin in novel poly(vinylpyrrolidone)s<br>modified with aromatic amines. Dyes and Pigments, 2013, 99, 759-770.                                                          | 3.7               | 23                |
| 46 | Controlling the aggregation of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin by the use of polycations derived from polyketones bearing charged aromatic groups. Dyes and Pigments, 2013, 98, 51-63.                           | 3.7               | 36                |
| 47 | Sensing Cu2+ by controlling the aggregation properties of the fluorescent dye rhodamine 6G with the aid of polyelectrolytes bearing different linear aromatic density. Reactive and Functional Polymers, 2013, 73, 1455-1463.      | 4.1               | 7                 |
| 48 | Therapeutic Potential of a Low-Cost Device for Wound Healing. American Journal of Therapeutics, 2013, 20, 394-398.                                                                                                                 | 0.9               | 10                |
| 49 | Different Models on Binding of Aromatic Counterions to Polyelectrolytes. Molecular Crystals and<br>Liquid Crystals, 2010, 522, 136/[436]-147/[447].                                                                                | 0.9               | 8                 |
| 50 | Influence of the Linear Aromatic Density on Methylene Blue Aggregation around Polyanions<br>Containing Sulfonate Groups. Journal of Physical Chemistry B, 2010, 114, 4151-4158.                                                    | 2.6               | 58                |
| 51 | Comparative Study of the Self-Aggregation of Rhodamine 6G in the Presence of Poly(sodium) Tj ETQq1 1 0.7843                                                                                                                        | 14 rgBT /C<br>2.6 | Verlock 101<br>45 |
|    | Poly(styrene- <i>alt</i> -maleic acid), and Poly(sodium acrylate). Journal of Physical Chemistry B, 2010, 114. 11983-11992.                                                                                                        |                   |                   |
| 52 | Polyaromatic-Anion Behavior of Different Polyelectrolytes Containing Benzenecarboxylate Units.<br>Journal of Physical Chemistry B, 2010, 114, 7753-7759.                                                                           | 2.6               | 12                |
| 53 | Binding of Methylene Blue to Polyelectrolytes Containing Sulfonate Groups. Macromolecular<br>Chemistry and Physics, 2009, 210, 1167-1175.                                                                                          | 2.2               | 60                |

54 Control of C.I. Basic Violet 10 aggregation in aqueous solution by the use of poly(sodium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (4

| #  | Article                                                                                                                                                                                                                              | IF                | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 55 | Comment on "J- and H-Aggregates of 5,10,15,20-Tetrakis-(4â^'sulfonatophenyl)-porphyrin and<br>Interconversion in PEG- <i>b</i> P4VP Micelles― Biomacromolecules, 2009, 10, 3341-3342.                                                | 5.4               | 19            |
| 56 | Stacking of 2,3,5-Triphenyl-2 <i>H</i> -tetrazolium Chloride onto Polyelectrolytes Containing<br>4-Styrenesulfonate Groups. Journal of Physical Chemistry B, 2008, 112, 11244-11249.                                                 | 2.6               | 22            |
| 57 | Reduction of 2,3,5-Triphenyl-2 <i>H</i> -tetrazolium Chloride in the Presence of Polyelectrolytes<br>Containing 4-Styrenesulfonate Moieties. Journal of Physical Chemistry B, 2008, 112, 5350-5354.                                  | 2.6               | 21            |
| 58 | Aromaticâ <sup>^</sup> Aromatic Interaction between 2,3,5-Triphenyl-2H-tetrazolium Chloride and Poly(sodium) Tj ETQq0 0                                                                                                              | 0 rgBT /Ov<br>2.6 | verlock 10 Tf |
| 59 | Tuning the pKa of the antihistaminic drug chlorpheniramine maleate by supramolecular interactions with water-soluble polymers. Polymer, 2007, 48, 799-804.                                                                           | 3.8               | 42            |
| 60 | Complex Formation between Rhodamine B and Poly(sodium 4-styrenesulfonate) Studied by1H-NMR.<br>Journal of Physical Chemistry B, 2006, 110, 21576-21581.                                                                              | 2.6               | 40            |
| 61 | pH Dependence of the Interaction between Rhodamine B and the Water-Soluble Poly(sodium) Tj ETQq1 1 0.784                                                                                                                             | 314 rgBT<br>2.6   | /Overlock 10  |
| 62 | Ï€-Stacking of rhodamine B onto water-soluble polymers containing aromatic groups. Polymer, 2006,<br>47, 6496-6500.                                                                                                                  | 3.8               | 48            |
| 63 | Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration. Journal of Membrane Science, 2006, 272, 137-142.                                                    | 8.2               | 26            |
| 64 | Comparison between the binding of chlorpheniramine maleate to poly(sodium 4-styrenesulfonate) and the binding to other polyelectrolytes. Polymer, 2005, 46, 7240-7245.                                                               | 3.8               | 22            |
| 65 | Binding of chlorpheniramine maleate to pharmacologically important alginic acid,<br>carboxymethylcellulose, Ĵº-carageenan, and Î1-carrageenan as studied by diafiltration. Journal of Applied<br>Polymer Science, 2005, 98, 598-602. | 2.6               | 12            |
| 66 | Complexation Behavior of Cu2+ in the Presence of Iminodiacetic Acid and Poly(ethyleneimine).<br>Macromolecular Chemistry and Physics, 2005, 206, 1541-1548.                                                                          | 2.2               | 11            |
| 67 | Interactions of polyelectrolytes bearing carboxylate and/or sulfonate groups with Cu(II) and Ni(II).<br>Polymer, 2004, 45, 1771-1775.                                                                                                | 3.8               | 37            |
| 68 | Interactions of 2,3,5-triphenyl-2-tetrazolium chloride with poly(sodium 4-styrenesulfonate) studied by diafiltration and UV?vis spectroscopy. Journal of Membrane Science, 2004, 244, 205-213.                                       | 8.2               | 21            |
| 69 | USE OF ULTRAFILTRATION ON THE EVALUATION AND QUANTIFICATION OF THE INTERACTIONS BETWEEN POLYMERS AND LOW MOLECULAR-WEIGHT MOLECULES IN AQUEOUS SOLUTIONS. Journal of the Chilean Chemical Society, 2004, 49, .                       | 1.2               | 25            |
| 70 | ERROR SIMULATION IN THE DETERMINATION OF THE FORMATION CONSTANTS OF POLYMER-METAL COMPLEXES (PMC) BY THE LIQUID-PHASE POLYMER-BASED RETENTION (LPR) TECHNIQUE. Journal of the Chilean Chemical Society, 2004, 49, .                  | 1.2               | 6             |
| 71 | Water-soluble polymer–metal ion interactions. Progress in Polymer Science, 2003, 28, 173-208.                                                                                                                                        | 24.7              | 416           |
| 72 | Competition of Divalent Metal Ions with Monovalent Metal Ions on the Adsorption on Water-Soluble<br>Polymers. Journal of Physical Chemistry B, 2002, 106, 9708-9711.                                                                 | 2.6               | 50            |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Metal ion enrichment of a water-soluble chelating polymer studied by ultrafiltration. Journal of<br>Membrane Science, 2002, 208, 69-73.                                                                                                             | 8.2 | 24        |
| 74 | Studies on the equilibrium among poly(sodium 4-styrenesulfonate), Cu2+, and iminodiacetic acid by<br>ultrafiltration at constant ionic strength. Journal of Polymer Science, Part B: Polymer Physics, 2002,<br>40, 2587-2593.                       | 2.1 | 5         |
| 75 | Use of Ultrafiltration on the Analysis of Low Molecular Weight Complexing Molecules. Analysis of<br>Iminodiacetic Acid at Constant Ionic Strength. Analytical Chemistry, 2001, 73, 5468-5471.                                                       | 6.5 | 21        |
| 76 | Polyelectrolyte behavior of three copolymers of 2-acrylamido-2-methyl-propanesulfonic acid and<br>N-acryloyl-N′-methylpiperazine studied by ultrafiltration. Journal of Membrane Science, 2001, 187,<br>271-275.                                    | 8.2 | 20        |
| 77 | Analysis of the interactions of biologically active poly(methacrylic-aminosalicylic acid) supports with Ca2+ and Zn2+ by ultrafiltration. Journal of Membrane Science, 2001, 192, 187-191.                                                          | 8.2 | 13        |
| 78 | Interactions of Water-Soluble Poly(sodium 4-styrenesulfonate) with Iminodiacetic Acid and Cu2+.<br>Macromolecular Rapid Communications, 2001, 22, 1191.                                                                                             | 3.9 | 5         |
| 79 | Effect of the Polymer Concentration on the Interactions of Water-Soluble Polymers with Metal Ions.<br>Chemistry Letters, 2000, 29, 166-167.                                                                                                         | 1.3 | 37        |
| 80 | Prediction of the retention values associated to the ultrafiltration of mixtures of metal ions and<br>high molecular weight water-soluble polymers as a function of the initial ionic strength. Journal of<br>Membrane Science, 2000, 178, 165-170. | 8.2 | 36        |
| 81 | Synthesis and behaviour of two copolymers of poly[acrylamide- co -(N-(hydroxymethyl)acrylamide)] in ultrafiltration experiments. Polymer Bulletin, 2000, 44, 159-165.                                                                               | 3.3 | 9         |
| 82 | Chelation properties of polymer complexes of poly(acrylic acid) with poly(acrylamide), and<br>poly(acrylic acid) with poly(N,N-dimethylacrylamide). Macromolecular Chemistry and Physics, 1998,<br>199, 1153-1160.                                  | 2.2 | 46        |
| 83 | Analysis of the retention profiles of poly (acrylic acid) with Co(II) and Ni(II). Polymer Bulletin, 1997, 39, 653-660.                                                                                                                              | 3.3 | 16        |