## Lalage M Wakefield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156046/publications.pdf Version: 2024-02-01



LALACE M WARFELELD

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Recognition of observer effect is required for rigor and reproducibility of preclinical animal studies.<br>Cancer Cell, 2022, 40, 231-232.                                                                                      | 7.7  | 9         |
| 2  | Aging and CNS Myeloid Cell Depletion Attenuate Breast Cancer Brain Metastasis. Clinical Cancer Research, 2021, 27, 4422-4434.                                                                                                   | 3.2  | 15        |
| 3  | Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nature<br>Methods, 2021, 18, 1181-1191.                                                                                           | 9.0  | 82        |
| 4  | Live tumor imaging shows macrophageÂinduction and TMEM-mediated enrichment of cancer stem cells<br>during metastatic dissemination. Nature Communications, 2021, 12, 7300.                                                      | 5.8  | 53        |
| 5  | The Outcome of TGFβ Antagonism in Metastatic Breast Cancer Models <i>In Vivo</i> Reflects a Complex<br>Balance between Tumor-Suppressive and Proprogression Activities of TGFβ. Clinical Cancer Research,<br>2020, 26, 643-656. | 3.2  | 16        |
| 6  | Peptidylarginine Deiminase IV Regulates Breast Cancer Stem Cells via a Novel Tumor Cell–Autonomous<br>Suppressor Role. Cancer Research, 2020, 80, 2125-2137.                                                                    | 0.4  | 18        |
| 7  | SOD2 acetylation on lysine 68 promotes stem cell reprogramming in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23534-23541.                                       | 3.3  | 57        |
| 8  | Epigenetic re-wiring of breast cancer by pharmacological targeting of C-terminal binding protein. Cell<br>Death and Disease, 2019, 10, 689.                                                                                     | 2.7  | 8         |
| 9  | The transcription factor CBFB suppresses breast cancer through orchestrating translation and transcription. Nature Communications, 2019, 10, 2071.                                                                              | 5.8  | 60        |
| 10 | Genetic insights into the morass of metastatic heterogeneity. Nature Reviews Cancer, 2018, 18, 211-223.                                                                                                                         | 12.8 | 140       |
| 11 | Limited fibrosis accompanies triple-negative breast cancer metastasis in multiple model systems and is not a preventive target. Oncotarget, 2018, 9, 23462-23481.                                                               | 0.8  | 9         |
| 12 | Regulation of Head and Neck Squamous Cancer Stem Cells by PI3K and SOX2. Journal of the National Cancer Institute, 2017, 109, djw189.                                                                                           | 3.0  | 98        |
| 13 | Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget, 2017, 8, 30621-30643.                                                                                       | 0.8  | 80        |
| 14 | Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3. ELife, 2017, 6, .                                                                               | 2.8  | 68        |
| 15 | Quantitation of TGF-β proteins in mouse tissues shows reciprocal changes in TGF-β1 and TGF-β3 in normal vs neoplastic mammary epithelium. Oncotarget, 2016, 7, 38164-38179.                                                     | 0.8  | 17        |
| 16 | Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and<br>molecular diagnostics. Journal of Translational Medicine, 2015, 13, 182.                                                  | 1.8  | 38        |
| 17 | A Flexible Reporter System for Direct Observation and Isolation of Cancer Stem Cells. Stem Cell Reports, 2015, 4, 155-169.                                                                                                      | 2.3  | 110       |
| 18 | Growth differentiation factor-15 encodes a novel microRNA 3189 that functions as a potent regulator of cell death. Cell Death and Differentiation, 2015, 22, 1641-1653.                                                         | 5.0  | 30        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Immune-mediated pathology in Duchenne muscular dystrophy. Science Translational Medicine, 2015, 7,<br>299rv4.                                                                                                                                    | 5.8  | 209       |
| 20 | A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis.<br>Oncogene, 2015, 34, 1094-1104.                                                                                                                | 2.6  | 66        |
| 21 | Differential Proteome Analysis Identifies TGF-β-Related Pro-Metastatic Proteins in a 4T1 Murine Breast<br>Cancer Model. PLoS ONE, 2015, 10, e0126483.                                                                                            | 1.1  | 20        |
| 22 | Effective Chemoimmunotherapy with Anti-TCFÎ <sup>2</sup> Antibody and Cyclophosphamide in a Mouse Model of Breast Cancer. PLoS ONE, 2014, 9, e85398.                                                                                             | 1.1  | 43        |
| 23 | Synergistic antitumor effects of a TGFβ inhibitor and cyclophosphamide. OncoImmunology, 2014, 3, e28247.                                                                                                                                         | 2.1  | 7         |
| 24 | Brightfield Proximity Ligation Assay Reveals Both Canonical and Mixed Transforming Growth<br>Factor-β/Bone Morphogenetic Protein Smad Signaling Complexes in Tissue Sections. Journal of<br>Histochemistry and Cytochemistry, 2014, 62, 846-863. | 1.3  | 16        |
| 25 | An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-I² in human breast cancer. Breast Cancer Research, 2014, 16, R57.                                                                   | 2.2  | 19        |
| 26 | Definition of Smad3 Phosphorylation Events That Affect Malignant and Metastatic Behaviors in Breast<br>Cancer Cells. Cancer Research, 2014, 74, 6139-6149.                                                                                       | 0.4  | 33        |
| 27 | A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182<br>Cluster. Molecular and Cellular Biology, 2014, 34, 533-550.                                                                                     | 1.1  | 92        |
| 28 | Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells. Oncotarget, 2014, 5, 7635-7650.                                                                        | 0.8  | 21        |
| 29 | Beyond TGFÎ <sup>2</sup> : roles of other TGFÎ <sup>2</sup> superfamily members in cancer. Nature Reviews Cancer, 2013, 13, 328-341.                                                                                                             | 12.8 | 352       |
| 30 | SDF-1α Mediates Wound-Promoted Tumor Growth in a Syngeneic Orthotopic Mouse Model of Breast<br>Cancer. PLoS ONE, 2013, 8, e60919.                                                                                                                | 1.1  | 6         |
| 31 | Expression of the B-Cell Receptor Component CD79a on Immature Myeloid Cells Contributes to Their<br>Tumor Promoting Effects. PLoS ONE, 2013, 8, e76115.                                                                                          | 1.1  | 57        |
| 32 | Biological Responses to TGF-β in the Mammary Epithelium Show a Complex Dependency on Smad3 Gene<br>Dosage with Important Implications for Tumor Progression. Molecular Cancer Research, 2012, 10,<br>1389-1399.                                  | 1.5  | 18        |
| 33 | TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. Journal of Lipid Research, 2012, 53, 2698-2707.                                                                    | 2.0  | 28        |
| 34 | Expression of TGF-Î <sup>2</sup> signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics. Breast Cancer Research and Treatment, 2010, 121, 727-735.                                          | 1.1  | 51        |
| 35 | Delineating Genetic Alterations for Tumor Progression in the MCF10A Series of Breast Cancer Cell Lines. PLoS ONE, 2010, 5, e9201.                                                                                                                | 1.1  | 130       |
| 36 | A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland. Breast Cancer Research, 2010, 12, R83.                                                | 2.2  | 22        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ras activation contributes to the maintenance and expansion of Sca-1pos cells in a mouse model of breast cancer. Cancer Letters, 2010, 287, 172-181.                                                                               | 3.2 | 29        |
| 38 | Modeling metastasis biology and therapy in real time in the mouse lung. Journal of Clinical Investigation, 2010, 120, 2979-2988.                                                                                                   | 3.9 | 79        |
| 39 | Transient Tumor-Fibroblast Interactions Increase Tumor Cell Malignancy by a TGF-β Mediated Mechanism in a Mouse Xenograft Model of Breast Cancer. PLoS ONE, 2010, 5, e9832.                                                        | 1.1 | 78        |
| 40 | Regulation of Tumor Immune Surveillance and Tumor Immune Subversion by TGF-β. Immune Network, 2009, 9, 122.                                                                                                                        | 1.6 | 17        |
| 41 | Progressive Tumor Formation in Mice with Conditional Deletion of TGF-β Signaling in Head and Neck<br>Epithelia Is Associated with Activation of the PI3K/Akt Pathway. Cancer Research, 2009, 69, 5918-5926.                        | 0.4 | 92        |
| 42 | Identification of Novel Gene Amplifications in Breast Cancer and Coexistence of Gene Amplification with an Activating Mutation of <i>PIK3CA</i> . Cancer Research, 2009, 69, 7357-7365.                                            | 0.4 | 104       |
| 43 | Transforming Growth Factor-βs and Mammary Gland Involution; Functional Roles and Implications for<br>Cancer Progression. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 131-144.                                        | 1.0 | 65        |
| 44 | TGF-β modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression. Cancer Immunology, Immunotherapy, 2009, 58, 1809-1818.                                                | 2.0 | 26        |
| 45 | An Anti–Transforming Growth Factor β Antibody Suppresses Metastasis via Cooperative Effects on<br>Multiple Cell Compartments. Cancer Research, 2008, 68, 3835-3843.                                                                | 0.4 | 203       |
| 46 | Acute Wounds Accelerate Tumorigenesis by a T Cell–Dependent Mechanism. Cancer Research, 2008, 68,<br>7278-7282.                                                                                                                    | 0.4 | 59        |
| 47 | Transforming Growth Factor β Subverts the Immune System into Directly Promoting Tumor Growth through Interleukin-17. Cancer Research, 2008, 68, 3915-3923.                                                                         | 0.4 | 233       |
| 48 | Transforming Growth Factor-β Can Suppress Tumorigenesis through Effects on the Putative Cancer<br>Stem or Early Progenitor Cell and Committed Progeny in a Breast Cancer Xenograft Model. Cancer<br>Research, 2007, 67, 8643-8652. | 0.4 | 97        |
| 49 | Accelerated Preclinical Testing Using Transplanted Tumors from Genetically Engineered Mouse Breast<br>Cancer Models. Clinical Cancer Research, 2007, 13, 2168-2177.                                                                | 3.2 | 44        |
| 50 | Dysadherin: A new player in cancer progression. Cancer Letters, 2007, 255, 161-169.                                                                                                                                                | 3.2 | 64        |
| 51 | Lentiviral reporter constructs for fluorescence tracking of the temporospatial pattern of Smad3 signaling. BioTechniques, 2007, 43, 289-294.                                                                                       | 0.8 | 6         |
| 52 | Keeping Order in the Neighborhood: New Roles for TGFβ in Maintaining Epithelial Homeostasis. Cancer<br>Cell, 2007, 12, 293-295.                                                                                                    | 7.7 | 34        |
| 53 | Development of Oncolytic Adenovirus Armed with a Fusion of Soluble Transforming Growth Factor-β<br>Receptor II and Human Immunoglobulin Fc for Breast Cancer Therapy. Human Gene Therapy, 2006, 17,<br>1152-1161.                  | 1.4 | 45        |
| 54 | Chemokine (C-C Motif) Ligand 2 Mediates the Prometastatic Effect of Dysadherin in Human Breast<br>Cancer Cells. Cancer Research, 2006, 66, 7176-7184.                                                                              | 0.4 | 94        |

| #  | Article                                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bone Sialoprotein Mediates the Tumor Cell–Targeted Prometastatic Activity of Transforming Growth<br>Factor β in a Mouse Model of Breast Cancer. Cancer Research, 2006, 66, 6327-6335.                                                                                                                                    | 0.4 | 93        |
| 56 | Development of Oncolytic Adenovirus Armed with a Fusion of Soluble Transforming Growth<br>Factor-?Receptor II and Human Immunoglobulin Fc for Breast Cancer Therapy. Human Gene Therapy,<br>2006, .                                                                                                                      | 1.4 | 0         |
| 57 | IL-13 Activates a Mechanism of Tissue Fibrosis That Is Completely TGF-β Independent. Journal of Immunology, 2004, 173, 4020-4029.                                                                                                                                                                                        | 0.4 | 337       |
| 58 | The two faces of transforming growth factor  in carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8621-8623.                                                                                                                                                   | 3.3 | 732       |
| 59 | TGF-Î <sup>2</sup> switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. Journal of Clinical Investigation, 2003, 112, 1116-1124.                                                                                                                                              | 3.9 | 204       |
| 60 | TGF-Î <sup>2</sup> switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. Journal of Clinical Investigation, 2003, 112, 1116-1124.                                                                                                                                              | 3.9 | 318       |
| 61 | Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Research, 2003, 63, 8284-92.                                                                                                                                                                         | 0.4 | 155       |
| 62 | Disruption of Transforming Growth Factor β Signaling by a Novel Ligand-dependent Mechanism.<br>Journal of Experimental Medicine, 2002, 195, 1247-1255.                                                                                                                                                                   | 4.2 | 37        |
| 63 | Latent Transforming Growth Factor-β Activation in Mammary Gland. American Journal of Pathology, 2002, 160, 2081-2093.                                                                                                                                                                                                    | 1.9 | 138       |
| 64 | Independent Regulation of Transforming Growth Factor-β1 Transcription and Translation by Glucose and Platelet-Derived Growth Factor. American Journal of Pathology, 2002, 161, 1039-1049.                                                                                                                                | 1.9 | 63        |
| 65 | TGF-β signaling: positive and negative effects on tumorigenesis. Current Opinion in Genetics and Development, 2002, 12, 22-29.                                                                                                                                                                                           | 1.5 | 796       |
| 66 | Validation of transgenic mammary cancer models: goals of the NCI Mouse Models of Human Cancer Consortium and the mammary cancer CD-ROM. Transgenic Research, 2002, 11, 635-636.                                                                                                                                          | 1.3 | 5         |
| 67 | Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. Journal of Clinical Investigation, 2002, 109, 1607-1615.                                                                                                                                                  | 3.9 | 189       |
| 68 | Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. Journal of Clinical Investigation, 2002, 109, 1607-1615.                                                                                                                                                  | 3.9 | 326       |
| 69 | Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2002, 13, 123-30. | 0.8 | 22        |
| 70 | Heterozygous inactivation of TGF-β1 increases the susceptibility to chemically induced mouse lung tumorigenesis independently of mutational activation of K-ras. Toxicology Letters, 2001, 123, 151-158.                                                                                                                 | 0.4 | 10        |
| 71 | Translational Regulation of Renal Proximal Tubular Epithelial Cell Transforming Growth Factor-β1<br>Generation by Insulin. American Journal of Pathology, 2001, 159, 1905-1915.                                                                                                                                          | 1.9 | 68        |
| 72 | TGF-beta signaling in mammary gland development and tumorigenesis. Journal of Mammary Gland<br>Biology and Neoplasia, 2001, 6, 67-82.                                                                                                                                                                                    | 1.0 | 84        |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Enhanced tumorigenesis and reduced transforming growth factor-? type II receptor in lung tumors from mice with reduced gene dosage of transforming growth factor-?1. Molecular Carcinogenesis, 2000, 29, 112-126.                                                    | 1.3  | 22        |
| 74 | The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene, 2000, 19, 968-988.                                                                                                              | 2.6  | 455       |
| 75 | Transforming growth factors-Î <sup>2</sup> are not good biomarkers of chemopreventive efficacy in a preclinical<br>breast cancer model system. Breast Cancer Research, 2000, 3, 66-75.                                                                               | 2.2  | 3         |
| 76 | Transforming growth factor-Î <sup>2</sup> and breast cancer: Lessons learned from genetically altered mouse models. Breast Cancer Research, 2000, 2, 100-6.                                                                                                          | 2.2  | 40        |
| 77 | TRANSFORMING GROWTH FACTOR-b1 AND ITS RECEPTORS IN HUMAN LUNG CANCER AND MOUSE LUNG CARCINOGENESIS. Experimental Lung Research, 2000, 26, 685-707.                                                                                                                   | 0.5  | 23        |
| 78 | Tamoxifen and fenretinide in women with metastatic breast cancer. Breast Cancer Research and Treatment, 1999, 57, 277-283.                                                                                                                                           | 1.1  | 30        |
| 79 | Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency.<br>Nature Medicine, 1998, 4, 802-807.                                                                                                                               | 15.2 | 296       |
| 80 | Identification of the start sites for the 1.9- and 1.4-kb rat transforming growth factor-β1 transcripts and their effect on translational efficiency. Gene, 1998, 219, 81-89.                                                                                        | 1.0  | 17        |
| 81 | Translational Control Elements in the Major Human Transforming Growth Factor-β1 mRNA. Growth Factors, 1998, 16, 89-100.                                                                                                                                              | 0.5  | 21        |
| 82 | Recharacterization of the start sites for the major human transforming growth factor-β1 mRNA. Gene, 1997, 189, 289-295.                                                                                                                                              | 1.0  | 9         |
| 83 | Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO Journal, 1997, 16, 2621-2633.                                  | 3.5  | 222       |
| 84 | Modulation of B16 Melanoma Growth and Metastasis by Anti-Transforming Growth Factor ?? Antibody and Interleukin-2. Journal of Immunotherapy, 1996, 19, 169-175.                                                                                                      | 1.2  | 57        |
| 85 | The recombinant proregion of transforming growth factor beta1 (latency-associated peptide) inhibits active transforming growth factor beta1 in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5877-5882. | 3.3  | 145       |
| 86 | Synthesis and secretion of transforming growth factor beta isoforms by primary cultures of human<br>breast tumour fibroblasts in vitro and their modulation by tamoxifen. British Journal of Cancer, 1996,<br>74, 352-358.                                           | 2.9  | 32        |
| 87 | Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2572-2576.                                           | 3.3  | 635       |
| 88 | Inhibition of the chondrocyte phenotype by retinoic acid involves upregulation of metalloprotease genes independent of TGF-?. Journal of Cellular Physiology, 1994, 159, 340-346.                                                                                    | 2.0  | 46        |
| 89 | TGF-β1 Prevents Hypertrophy of Epiphyseal Chondrocytes: Regulation of Gene Expression for Cartilage<br>Matrix Proteins and Metalloproteases. Developmental Biology, 1993, 158, 414-429.                                                                              | 0.9  | 225       |
| 90 | Addition of a C-Terminal Extension Sequence to Transforming Growth Factor-pl Interferes with Biosynthetic Processing and Abolishes Biological Activity. Growth Factors, 1991, 5, 243-253.                                                                            | 0.5  | 11        |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Latent Forms of Transforming Growth Factor-β (TGFβ) Derived from Bone Cultures: Identification of a<br>Naturally Occurring 100-kDa Complex with Similarity to Recombinant Latent TGFβ. Molecular<br>Endocrinology, 1991, 5, 741-751.                  | 3.7  | 121       |
| 92  | Physicochemical Activation of Recombinant Latent Transforming Growth Factor-beta's 1, 2, and 3. Growth Factors, 1990, 3, 35-43.                                                                                                                       | 0.5  | 324       |
| 93  | Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than<br>active transforming growth factor beta 1, and a different tissue distribution Journal of Clinical<br>Investigation, 1990, 86, 1976-1984.           | 3.9  | 279       |
| 94  | Recombinant TGF- $\hat{1}^21$ is Synthesized as a Two-Component Latent Complex that Shares Some Structural Features with the Native Platelet Latent TGF- $\hat{1}^21$ Complex. Growth Factors, 1989, 1, 203-218.                                      | 0.5  | 115       |
| 95  | Transforming Growth Factor-?: Multifunctional Regulator of Cell Growth and Phenotype. Annals of the New York Academy of Sciences, 1988, 551, 290-298.                                                                                                 | 1.8  | 32        |
| 96  | Distribution and modulation of the cellular receptor for transforming growth factor-beta Journal of Cell Biology, 1987, 105, 965-975.                                                                                                                 | 2.3  | 519       |
| 97  | Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell, 1987, 48, 417-428.                                                                                                    | 13.5 | 954       |
| 98  | Some recent advances in the chemistry and biology of transforming growth factor-beta Journal of Cell Biology, 1987, 105, 1039-1045.                                                                                                                   | 2.3  | 1,277     |
| 99  | Structure and properties of the cellular receptor for transforming growth factor type beta.<br>Biochemistry, 1986, 25, 3083-3091.                                                                                                                     | 1.2  | 101       |
| 100 | Transforming growth factor-beta: biological function and chemical structure. Science, 1986, 233, 532-534.                                                                                                                                             | 6.0  | 1,192     |
| 101 | Type beta transforming growth factor is the primary differentiation-inducing serum factor for<br>normal human bronchial epithelial cells Proceedings of the National Academy of Sciences of the<br>United States of America, 1986, 83, 2438-2442.     | 3.3  | 528       |
| 102 | Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and<br>stimulation of collagen formation in vitro Proceedings of the National Academy of Sciences of the<br>United States of America, 1986, 83, 4167-4171. | 3.3  | 2,691     |
| 103 | Type beta transforming growth factor: a bifunctional regulator of cellular growth Proceedings of the United States of America, 1985, 82, 119-123.                                                                                                     | 3.3  | 1,056     |
| 104 | Isolation of a membrane protein by chromatofocusing: Cytochrome b-561 of the adrenal chromaffin granule. Journal of Proteomics, 1984, 9, 331-341.                                                                                                     | 2.4  | 31        |
| 105 | The role of phospholipids in the modulation of enzyme activities in the chromaffin granule membrane.<br>Biochimica Et Biophysica Acta - Biomembranes, 1981, 643, 363-375.                                                                             | 1.4  | 25        |
| 106 | Reconstitution of the Mg2+ -ATPase of the chromaffin granule membrane. FEBS Letters, 1979, 103, 323-327.                                                                                                                                              | 1.3  | 23        |