Wang Qiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9155969/publications.pdf

Version: 2024-02-01

117453 123241 3,843 67 34 61 h-index citations g-index papers 67 67 67 1649 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Value-added utilization of copper slag to enhance the performance of magnesium potassium phosphate cement. Resources, Conservation and Recycling, 2022, 180, 106212.	5.3	34
2	The effects of cations and concentration on reaction mechanism of alkali-activated blast furnace ferronickel slag. Composites Part B: Engineering, 2022, 236, 109825.	5.9	27
3	Water absorption behaviour of concrete: Novel experimental findings and model characterization. Journal of Building Engineering, 2022, 53, 104602.	1.6	13
4	Role of NaF on the performances of \hat{l}^2 -hemihydrate gypsum plaster. Journal of Building Engineering, 2022, 55, 104725.	1.6	2
5	Understanding the workability of alkali-activated phosphorus slag pastes: Effects of alkali dose and silicate modulus on early-age hydration reactions. Cement and Concrete Composites, 2022, 133, 104649.	4.6	22
6	A comprehensive overview of fibre-reinforced gypsum-based composites (FRGCs) in the construction field. Composites Part B: Engineering, 2021, 205, 108540.	5.9	65
7	Inhibition mechanisms of steel slag on the early-age hydration of cement. Cement and Concrete Research, 2021, 140, 106283.	4.6	210
8	Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Construction and Building Materials, 2021, 272, 121647.	3.2	41
9	Micromechanical analysis of interfacial transition zone in alkali-activated fly ash-slag concrete. Cement and Concrete Composites, 2021, 119, 103990.	4.6	36
10	Effects of Graphite on Electrically Conductive Cementitious Composite Properties: A Review. Materials, 2021, 14, 4798.	1.3	11
11	Reuse of phosphogypsum as hemihydrate gypsum: The negative effect and content control of H3PO4. Resources, Conservation and Recycling, 2021, 174, 105830.	5.3	53
12	A review of waste-containing building materials: Characterization of the heavy metal. Construction and Building Materials, 2021, 309, 125107.	3.2	12
13	Influence of ultra-fine slag and silica fume on properties of high-strength concrete. Magazine of Concrete Research, 2020, 72, 610-621.	0.9	16
14	Study on the improvement of the waterproof and mechanical properties of hemihydrate phosphogypsum-based foam insulation materials. Construction and Building Materials, 2020, 230, 117014.	3.2	58
15	Reuse of hazardous electrolytic manganese residue: Detailed leaching characterization and novel application as a cementitious material. Resources, Conservation and Recycling, 2020, 154, 104645.	5.3	105
16	Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resources, Conservation and Recycling, 2020, 162, 105037.	5.3	58
17	Novel Foam Insulation Material Produced by Calcined Phosphogypsum and H2O2. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	12
18	A new understanding of the effect of filler minerals on the precipitation of synthetic C–S–H. Journal of Materials Science, 2020, 55, 16455-16469.	1.7	6

#	Article	IF	Citations
19	New insights into the early reaction of NaOH-activated slag in the presence of CaSO4. Composites Part B: Engineering, 2020, 198, 108207.	5.9	72
20	ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars. Construction and Building Materials, 2020, 262, 119990.	3.2	24
21	A novel gypsum-based self-leveling mortar produced by phosphorus building gypsum. Construction and Building Materials, 2019, 226, 11-20.	3.2	56
22	Investigation on the poor fluidity of electrically conductive cement-graphite paste: Experiment and simulation. Materials and Design, 2019, 169, 107679.	3.3	64
23	Research on the resistance to saline soil erosion of high-volume mineral admixture steam-cured concrete. Construction and Building Materials, 2019, 202, 1-10.	3.2	30
24	Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technology, 2019, 345, 54-63.	2.1	93
25	An investigation on the anti-water properties of phosphorus building gypsum (PBG)-based mortar. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1575-1585.	2.0	22
26	Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete. Journal of Thermal Analysis and Calorimetry, 2018, 131, 873-885.	2.0	29
27	Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: Reaction mechanism, engineering properties and leaching behaviors. Construction and Building Materials, 2018, 188, 860-873.	3.2	82
28	Long-term properties of concrete containing limestone powder. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	55
29	Influence of the initial moist curing time on the sulfate attack resistance of concretes with different binders. Construction and Building Materials, 2017, 144, 541-551.	3.2	48
30	Characteristics and reactivity of ferronickel slag powder. Construction and Building Materials, 2017, 156, 773-789.	3.2	100
31	The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cement and Concrete Composites, 2017, 83, 125-137.	4.6	161
32	The soundness of steel slag with different free CaO and MgO contents. Construction and Building Materials, 2017, 151, 138-146.	3.2	190
33	Influence of alkali activators on the early hydration of cement-based binders under steam curing condition. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1801-1816.	2.0	13
34	Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water-to-Binder Ratios. Advances in Materials Science and Engineering, 2017, 2017, 1-10.	1.0	39
35	Influence of elevated curing temperature on the properties of cement paste and concrete at the same hydration degree. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1344-1351.	0.4	14
36	Influence of Steam Curing Method on the Performance of Concrete Containing a Large Portion of Mineral Admixtures. Advances in Materials Science and Engineering, 2017, 2017, 1-11.	1.0	12

#	Article	IF	Citations
37	Hydration mechanisms of composite binders containing phosphorus slag at different temperatures. Construction and Building Materials, 2017, 147, 720-732.	3.2	69
38	Influence of classified steel slag with particle sizes smaller than 20 $\hat{1}$ /4m on the properties of cement and concrete. Construction and Building Materials, 2016, 123, 601-610.	3.2	101
39	Contributions of fly ash and ground granulated blast-furnace slag to the early hydration heat of composite binder at different curing temperatures. Advances in Cement Research, 2016, 28, 320-327.	0.7	20
40	Properties of high-volume limestone powder concrete under standard curing and steam-curing conditions. Powder Technology, 2016, 301, 16-25.	2.1	76
41	Early hydration properties of composite binder containing limestone powder with different finenesses. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1141-1151.	2.0	35
42	Hydration properties of steel slag under autoclaved condition. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1241-1248.	2.0	36
43	The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 2015, 93, 172-179.	3.2	62
44	Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition. Construction and Building Materials, 2015, 98, 649-655.	3.2	121
45	Influence of pre-curing time on the hydration of binder and the properties of concrete under steam curing condition. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1505-1512.	2.0	18
46	The difference among the effects of high-temperature curing on the early hydration properties of different cementitious systems. Journal of Thermal Analysis and Calorimetry, 2014, 118, 51-58.	2.0	19
47	A comparison of early hydration properties of cement–steel slag binder and cement–limestone powder binder. Journal of Thermal Analysis and Calorimetry, 2014, 115, 193-200.	2.0	39
48	Comparison of hydration properties between cement-GGBS-fly ash blended binder and cement-GGBS-steel slag blended binder. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 273-277.	0.4	5
49	Influence of steel slag on mechanical properties and durability of concrete. Construction and Building Materials, 2013, 47, 1414-1420.	3.2	225
50	The influence of steel slag with high Al2O3 content on the initial hydration of cement. Science China Technological Sciences, 2013, 56, 3123-3128.	2.0	12
51	Cementitious properties of super-fine steel slag. Powder Technology, 2013, 245, 35-39.	2.1	137
52	Design of high-volume fly ash concrete for a massive foundation slab. Magazine of Concrete Research, 2013, 65, 71-81.	0.9	24
53	Effects of Blended Steel Slag-Superfine Fly Ash Mineral Admixture and Ordinary Fly Ash on the Properties of Concrete. Materials Science Forum, 2013, 743-744, 323-328.	0.3	0
54	The influence of high-temperature curing on the hydration characteristics of a cement–GGBS binder. Advances in Cement Research, 2012, 24, 33-40.	0.7	20

#	Article	IF	CITATIONS
55	Influence of initial alkalinity on the hydration of steel slag. Science China Technological Sciences, 2012, 55, 3378-3387.	2.0	46
56	The influence of mineral admixtures on bending strength of mortar on the premise of equal compressive strength. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 586-589.	0.4	2
57	The microstructure of 4-year-old hardened cement-fly ash paste. Construction and Building Materials, 2012, 29, 114-119.	3.2	44
58	Effect of blended steel slag–GBFS mineral admixture on hydration and strength of cement. Construction and Building Materials, 2012, 35, 8-14.	3.2	132
59	Compressive strength development and microstructure of cement-asphalt mortar. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 998-1003.	0.4	32
60	An explanation for the negative effect of elevated temperature at early ages on the late-age strength of concrete. Journal of Materials Science, 2011, 46, 7279-7288.	1.7	33
61	The influence of steel slag on the hydration of cement during the hydration process of complex binder. Science China Technological Sciences, 2011, 54, 388-394.	2.0	102
62	A discussion on improving hydration activity of steel slag by altering its mineral compositions. Journal of Hazardous Materials, 2011, 186, 1070-1075.	6.5	167
63	Strength Mechanism of Cement-Asphalt Mortar. Journal of Materials in Civil Engineering, 2011, 23, 1353-1359.	1.3	88
64	Activity index for steel slag. Magazine of Concrete Research, 2011, 63, 737-742.	0.9	22
65	Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials, 2010, 24, 1134-1140.	3.2	265
66	Influence of Steel Slag on the Workability of Concrete. Key Engineering Materials, 0, 539, 235-238.	0.4	6
67	Activity Index of Steel Slag-GGBS Composite Mineral Admixture at Different W/B Ratios. Applied Mechanics and Materials, 0, 584-586, 1541-1544.	0.2	0