
Jianhua Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9155905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	24.0	228
2	Solution-Processed DPP-Based Small Molecule that Gives High Photovoltaic Efficiency with Judicious Device Optimization. ACS Applied Materials & amp; Interfaces, 2013, 5, 2033-2039.	8.0	163
3	8.78% Efficient Allâ€Polymer Solar Cells Enabled by Polymer Acceptors Based on a Bâ†N Embedded Electronâ€Deficient Unit. Advanced Materials, 2019, 31, e1904585.	21.0	113
4	BN Embedded Polycyclic ï€-Conjugated Systems: Synthesis, Optoelectronic Properties, and Photovoltaic Applications. Frontiers in Chemistry, 2018, 6, 341.	3.6	95
5	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	30.8	84
6	Phthalimide Polymer Donor Guests Enable over 17% Efficient Organic Solar Cells via Parallel‣ike Ternary and Quaternary Strategies. Advanced Energy Materials, 2020, 10, 2001436.	19.5	75
7	Additive-Assisted Control over Phase-Separated Nanostructures by Manipulating Alkylthienyl Position at Donor Backbone for Solution-Processed, Non-Fullerene, All-Small-Molecule Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 3853-3862.	8.0	70
8	Significant improvement of photovoltaic performance by embedding thiophene in solution-processed star-shaped TPA-DPP backbone. Journal of Materials Chemistry A, 2013, 1, 5747.	10.3	69
9	Benzodithiophene bridged dimeric perylene diimide amphiphiles as efficient solution-processed non-fullerene small molecules. Polymer Chemistry, 2013, 4, 4631.	3.9	66
10	Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units. Physical Chemistry Chemical Physics, 2012, 14, 14238.	2.8	53
11	Effects of structure-manipulated molecular stacking on solid-state optical properties and device performances. Polymer Chemistry, 2012, 3, 2832.	3.9	41
12	Cooperatively Tuning Phase Size and Absorption of Near IR Photons in P3HT:Perylene Diimide Solar Cells by Bay-Modifications on the Acceptor. Journal of Physical Chemistry C, 2014, 118, 24212-24220.	3.1	39
13	Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dyes and Pigments, 2019, 166, 196-202.	3.7	35
14	Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency. Polymer Chemistry, 2013, 4, 2174.	3.9	28
15	A new solution-processed diketopyrrolopyrrole donor for non-fullerene small-molecule solar cells. Journal of Materials Chemistry A, 2014, 2, 1869-1876.	10.3	28
16	Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6688-6698.	8.0	26
17	Synthesis and charge-transporting properties of electron-deficient CN2–fluorene based D–A copolymers. Polymer Chemistry, 2012, 3, 2170.	3.9	24
18	Bâ†N Coordination: From Chemistry to Organic Photovoltaic Materials. Advanced Energy and Sustainability Research, 2021, 2, 2100016.	5.8	24

Jianhua Huang

#	Article	IF	CITATIONS
19	Structural Cutting of Non-fullerene Acceptors by Chlorination: Effects of Substituent Number on Device Performance. ACS Applied Materials & Interfaces, 2020, 12, 50541-50549.	8.0	20
20	Large-scale, ultra-dense and vertically standing zinc phthalocyanine π–π stacks as a hole-transporting layer on an ITO electrode. Journal of Materials Chemistry, 2012, 22, 23492.	6.7	18
21	Effects of Halogenation in B ↕N Embedded Polymer Acceptors on Performance of All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 2733-2742.	8.0	17
22	Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells. Journal of Materials Chemistry A, 2016, 4, 15688-15697.	10.3	16
23	B ↕N Bridged Polymer Acceptors with 900 nm Absorption Edges Enabling High-Performance All-Polymer Solar Cells. Macromolecules, 2020, 53, 9529-9538.	4.8	16
24	A Lewis acid-base chemistry approach towards narrow bandgap dye molecules. Dyes and Pigments, 2018, 153, 1-9.	3.7	15
25	Adjusting the energy levels and bandgaps of conjugated polymers <i>via</i> Lewis acid–base reactions. New Journal of Chemistry, 2018, 42, 18961-18968.	2.8	15
26	Synthesis of Bâ†N embedded indacenodithiophene chromophores and effects of bromine atoms on photophysical properties and energy levels. Tetrahedron, 2018, 74, 4308-4314.	1.9	12
27	Synthesis of aromatic substituted B â†â€¯N embedded units with good stability and strong electron-affinity. Tetrahedron Letters, 2019, 60, 151286.	1.4	11
28	Quaternary polymer solar cells with over 13% efficiency enabled by improving film-morphologies <i>via</i> binary mixed fullerene additive. Materials Chemistry Frontiers, 2019, 3, 301-307.	5.9	11
29	Synthesis of Conjugated Polymers Containing Bâ†₦ Bonds with Strong Electron Affinity and Extended Absorption. Polymers, 2019, 11, 1630.	4.5	10
30	Fullerene-free polymer solar cells enabled with a PhI-based wide band gap donor polymer: promoting efficiencies <i>via</i> acceptor screening and device engineering. Journal of Materials Chemistry C, 2019, 7, 8442-8449.	5.5	7
31	A Solutionâ€Processed Smallâ€Molecule Diketopyrrolopyrrole Dimer for Organic Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 948-952.	2.7	6
32	Greenâ€Solventâ€Processed 17% Efficient Polymer Solar Cell Achieved Synergistically by Aligning Energy Levels and Improving Morphology with the Quaternary Strategy. Solar Rrl, 2022, 6, .	5.8	5
33	B ↕N Coordination Enables Efficient p-Doping in a Pyrazine-Based Polymer Donor Toward Enhanced Photovoltaic Performance. Macromolecules, 2021, 54, 10758-10766.	4.8	4
34	Chlorinated phthalimide polymer donor as ultra-wide bandgap and deep HOMO guest for achieving highly efficient polymer solar cells. Chinese Chemical Letters, 2023, 34, 107436.	9.0	3
35	Synthesis of a Benzothiadiazole-Based Dâ°'A Molecule with Aggregation-Induced Emission and Controlled Assembly Properties. Processes, 2021, 9, 1094.	2.8	0