Marcelo Godoy Simes

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9155844/marcelo-godoy-simoes-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

168
papers5,326
citations36
h-index70
g-index186
ext. papers6,702
ext. citations4.4
avg, IF5.93
L-index

#	Paper	IF	Citations
168	Future Renewable Energy Communities Based Flexible Power Systems. <i>Applied Sciences</i> (Switzerland), 2022 , 12, 121	2.6	3
167	Economic Planning and Comparative Analysis of Market-driven Multi-microgrid system for Peer-to-Peer energy trading. <i>IEEE Transactions on Industry Applications</i> , 2022 , 1-1	4.3	4
166	Field-oriented control strategy for double-stator single-rotor and double-rotor single-stator permanent magnet machine: Design and operation. <i>Computers and Electrical Engineering</i> , 2021 , 90, 1069	9 \$ 3	13
165	Multilevel Current Source Converter-Based STATCOM Suitable for Medium-Voltage Applications. <i>IEEE Transactions on Power Delivery</i> , 2021 , 36, 1222-1232	4.3	2
164	A Robust Self-Attentive Capsule Network for Fault Diagnosis of Series-Compensated Transmission Line. <i>IEEE Transactions on Power Delivery</i> , 2021 , 1-1	4.3	4
163	Analysis of Stationary- and Synchronous-Reference Frames for Three-Phase Three-Wire Grid-Connected Converter AC Current Regulators. <i>Energies</i> , 2021 , 14, 8348	3.1	О
162	Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. <i>Solar Energy</i> , 2020 , 207, 103-109	6.8	9
161	Current Balancing Algorithm for Three-Phase Multilevel Current Source Inverters. <i>Energies</i> , 2020 , 13, 860	3.1	2
160	An Isolated High Voltage Boost Current-Fed DCDC Converter Based on 1:1 Transformer Multiplier Cells and ZVS Operation. <i>Electronics (Switzerland)</i> , 2020 , 9, 102	2.6	1
159	Power management algorithm for a conservative power theory battery storage based multi-functional three phase grid connected PV inverter. <i>International Transactions on Electrical Energy Systems</i> , 2020 , 30, e12605	2.2	О
158	Highly Accurate Digital Current Controllers for Single-Phase LCL-Filtered Grid-Connected Inverters. <i>Electricity</i> , 2020 , 1, 12-36	1	2
157	Shading position effects on photovoltaic panel output power. <i>International Transactions on Electrical Energy Systems</i> , 2020 , 30, e12163	2.2	4
156	Compressive Informative Sparse Representation-Based Power Quality Events Classification. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 909-921	11.9	7
155	Compressive System Identification for Multiple Line Outage Detection in Smart Grids. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 4462-4473	4.3	9
154	Frequency Support of Smart Grid Using Fuzzy Logic-Based Controller for Wind Energy Systems. <i>Energies</i> , 2019 , 12, 1550	3.1	2
153	Scalable Single-Phase Multi-Functional Inverter for Integration of Rooftop Solar-PV to Low-Voltage Ideal and Weak Utility Grid. <i>Electronics (Switzerland)</i> , 2019 , 8, 302	2.6	6
152	Advanced Three-Phase Instantaneous Power Theory Feature Extraction for Microgrid Islanding and Synchronized Measurements 2019 ,		1

(2018-2019)

151	Load Disaggregation Using Microscopic Power Features and Pattern Recognition. <i>Energies</i> , 2019 , 12, 2641	3.1	14	
150	Understanding the Staircase Modulation Strategy and Its Application in Both Isolated and Grid-Connected Asymmetric Cascaded H-Bridge Multilevel Inverters. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 5371-5382	4.3	4	
149	Enhanced Dual-Spectrum Line Interpolated FFT with Four-Term Minimal Sidelobe Cosine Window for Real-Time Harmonic Estimation in Synchrophasor Smart-Grid Technology. <i>Electronics</i> (Switzerland), 2019 , 8, 191	2.6	2	
148	Survey on time-domain power theories and their applications for renewable energy integration in smart-grids. <i>IET Smart Grid</i> , 2019 , 2, 491-503	2.7	6	
147	Direct Connection of Supercapacitor B attery Hybrid Storage System to the Grid-Tied Photovoltaic System. <i>IEEE Transactions on Sustainable Energy</i> , 2019 , 10, 1370-1379	8.2	29	
146	Grid-Connected Symmetrical Cascaded Multilevel Converter for Power Quality Improvement. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 2792-2805	4.3	25	
145	Enhanced Instantaneous Power Theory Decomposition for Power Quality Smart Converter Applications. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 9344-9359	7.2	30	
144	Application of the Conservative Power Theory Current Decomposition in a Load Power-Sharing Strategy Among Distributed Energy Resources. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 37	71 ⁴ 378	1 ¹³	
143	. IEEE Transactions on Smart Grid, 2018 , 9, 2964-2975	10.7	52	
142	Simplified Small-Signal Model for Output Voltage Control of Asymmetric Cascaded H-Bridge Multilevel Inverter. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 3509-3519	7.2	19	
141	Solar Heat Underground Storage Based Air Conditioning Vis-EVis Conventional HVAC Experimental Validation. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2018 , 140,	2.3	1	
140	Synergistic operation between battery energy storage and photovoltaic generator systems to assist management of microgrids. <i>IET Generation, Transmission and Distribution</i> , 2018 , 12, 2944-2951	2.5	7	
139	Compressive Sensing for Power System Data Analysis 2018 , 159-178		2	
138	Design Procedure for a Digital Proportional-Resonant Current Controller in a Grid Connected Inverter 2018 ,		4	
137	Optimal Power Reserve of a Wind Turbine System Participating in Primary Frequency Control. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 2022	2.6	5	
136	Distributed Generation Systems: An Approach in Instrumentation and Monitoring. <i>Electric Power Components and Systems</i> , 2018 , 46, 2189-2202	1	1	
135	Exploiting Compressive System Identification for Multiple Line Outage Detection in Smart Grids 2018 ,		3	
134	Centralized Power Reserve Algorithm of De-loaded Wind Farm for Primary Frequency Regulation 2018 ,		3	

133	A Low Current-Ripple Coupled-Inductor Step-Up DC-DC Converter for Voltage-Multiplier Topology Solar PV Applications 2018 ,		1
132	A Bidirectional NPC-based Level 3 EV Charging System with Added Active Filter Functionality in Smart Grid Applications 2018 ,		14
131	A NILM Dataset for Cognitive Meters Based on Conservative Power Theory and Pattern Recognition Techniques. <i>Journal of Control, Automation and Electrical Systems</i> , 2018 , 29, 742-755	1.5	8
130	Centralized Control of Distributed Single-Phase Inverters Arbitrarily Connected to Three-Phase Four-Wire Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2017 , 8, 437-446	10.7	51
129	. IEEE Transactions on Industry Applications, 2017 , 53, 2495-2505	4.3	49
128	Three-phase battery storage system with transformerless cascaded multilevel inverter for distribution grid applications. <i>IET Renewable Power Generation</i> , 2017 , 11, 742-749	2.9	7
127	Selective Sharing of Load Current Components Among Parallel Power Electronic Interfaces in Three-phase Four-wire Stand-alone Microgrid. <i>Electric Power Components and Systems</i> , 2017 , 45, 864-86	80 ¹	4
126	Distributed Energy Management of PV-Storage Systems for Voltage Rise Mitigation. <i>Technology and Economics of Smart Grids and Sustainable Energy</i> , 2017 , 2, 1	2.1	8
125	Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach. <i>Journal of Power Sources</i> , 2017 , 366, 278-291	8.9	117
124	Online energy management strategy of fuel cell hybrid electric vehicles based on time series prediction 2017 ,		14
123	. IEEE Transactions on Industry Applications, 2017 , 53, 1538-1551	4.3	44
122	Real-time control of hybrid active power filter using conservative power theory in industrial power system. <i>IET Power Electronics</i> , 2017 , 10, 196-207	2.2	13
121	Three-phase smart inverter for flexible power conditioning in low voltage distribution systems 2017 ,		4
120	Economic analysis, optimal sizing and management of energy storage for PV grid integration 2016,		8
119	. IEEE Transactions on Industry Applications, 2016 , 52, 4375-4384	4.3	21
118	. IEEE Transactions on Industrial Informatics, 2016 , 12, 532-543	11.9	56
117	Power control flexibilities for grid-connected multi-functional photovoltaic inverters. <i>IET Renewable Power Generation</i> , 2016 , 10, 504-513	2.9	104
116	Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory. <i>International Journal of Control</i> , 2016 , 89, 850-870	1.5	25

(2015-2016)

115	Application of the current decomposition of the Conservative Power Theory in Distributed Energy Resources 2016 ,		2
114	Modeling and tracking Transmission Line Dynamic Behavior in Smart Grids using structured sparsity 2016 ,		2
113	Passive Filter Aided by Shunt Compensators Based on the Conservative Power Theory. <i>IEEE Transactions on Industry Applications</i> , 2016 , 52, 3340-3347	4.3	23
112	Restoration strategy in a self-healing distribution network with DG and flexible loads 2016,		6
111	Bidirectional direct current-direct current converter for fuel cell and renewable energy hybrid systems. <i>Journal of Renewable and Sustainable Energy</i> , 2015 , 7, 013119	2.5	5
110	Small Wind Energy Systems. <i>Electric Power Components and Systems</i> , 2015 , 43, 1388-1405	1	9
109	Bidirectional floating interleaved buck-boost DC-DC converter applied to residential PV power systems 2015 ,		10
108	Power quality enhancem ent by means of shunt compensators based on the conservative power theory 2015 ,		2
107	Cooperative operation based master-slave in islanded microgrid with CPT current decomposition 2015 ,		10
106	Application of compressive sensing for distributed and structured power line outage detection in smart grids 2015 ,		8
105	A multi task microgrid inverter based instantaneous Power Theory in islanded and grid-connected modes 2015 ,		2
104	Short transient recovery of low voltage-grid-tied DC distributed generation 2015,		10
103	Coordinated operation in a multi-inverter based microgrid for both grid-connected and islanded modes using conservative power theory 2015 ,		8
102	5-level Cascaded H-Bridge Multilevel microgrid Inverter applicable to multiple DG resources with power quality enhancement capability 2015 ,		5
101	Multifunctional control strategy for asymmetrical cascaded H-Bridge Inverter in microgrid applications 2015 ,		2
100	Power quality achievement using grid connected converter of wind turbine system 2015,		4
99	Staircase modulation based battery storage system with Asymmetric Cascaded H-Bridge Multivel Inverter 2015 ,		3
98	Designing smart inverter with unified controller and smooth transition between grid-connected and islanding modes for microgrid application 2015 ,		16

97	Smart grid topology identification using sparse recovery 2015 ,		4
96	Selective operation of three-level NPC inverter based on synchronous reference frame method supplying nonlinear loads in microgrid system 2015 ,		2
95	Novel expert system for defining power quality compensators. <i>Expert Systems With Applications</i> , 2015 , 42, 3562-3570	7.8	8
94	Development of a Quasi 2-D Modeling of Tubular Solid-Oxide Fuel Cell for Real-Time Control. <i>IEEE Transactions on Energy Conversion</i> , 2014 , 29, 9-19	5.4	14
93	Evaluating the Long-Term Impact of a Continuously Increasing Harmonic Demand on Feeder-Level Voltage Distortion. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 2142-2149	4.3	35
92	. IEEE Transactions on Smart Grid, 2014 , 5, 2967-2979	10.7	15
91	Measurement-based performance analysis of wind energy systems. <i>IEEE Instrumentation and Measurement Magazine</i> , 2014 , 17, 15-20	1.4	2
90	Fuzzy-Based Energy Management Control: Design of a Battery Auxiliary Power Unit for Remote Applications. <i>IEEE Industry Applications Magazine</i> , 2014 , 20, 41-49	0.6	12
89	Experimental evaluation of an interleaved boost topology optimized for peak power tracking control 2014 ,		3
88	PQ, DQ and CPT control methods for shunt active compensators IA comparative study 2014 ,		23
88 87	PQ, DQ and CPT control methods for shunt active compensators [A comparative study 2014, Development of a four phase floating interleaved boost converter for photovoltaic systems 2014,		23 15
		4.3	
87	Development of a four phase floating interleaved boost converter for photovoltaic systems 2014 , \$LCL\$ Filter Design and Performance Analysis for Grid-Interconnected Systems. <i>IEEE Transactions</i>	4.3	15
8 ₇ 86	Development of a four phase floating interleaved boost converter for photovoltaic systems 2014 , \$LCL\$ Filter Design and Performance Analysis for Grid-Interconnected Systems. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 1225-1232 An Energy Management System for Building Structures Using a Multi-Agent Decision-Making		15 290
87 86 85	Development of a four phase floating interleaved boost converter for photovoltaic systems 2014 , \$LCL\$ Filter Design and Performance Analysis for Grid-Interconnected Systems. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 1225-1232 An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. <i>IEEE Transactions on Industry Applications</i> , 2013 , 49, 322-330	4.3	15 290 147
87 86 85 84	Development of a four phase floating interleaved boost converter for photovoltaic systems 2014, \$LCL\$ Filter Design and Performance Analysis for Grid-Interconnected Systems. <i>IEEE Transactions on Industry Applications</i> , 2014, 50, 1225-1232 An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. <i>IEEE Transactions on Industry Applications</i> , 2013, 49, 322-330 Small Hydroelectric Systems. <i>Green Energy and Technology</i> , 2013, 151-184	4.3	15 290 147
87 86 85 84 83	Development of a four phase floating interleaved boost converter for photovoltaic systems 2014, \$LCL\$ Filter Design and Performance Analysis for Grid-Interconnected Systems. <i>IEEE Transactions on Industry Applications</i> , 2014, 50, 1225-1232 An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. <i>IEEE Transactions on Industry Applications</i> , 2013, 49, 322-330 Small Hydroelectric Systems. <i>Green Energy and Technology</i> , 2013, 151-184 Advances in information technology for Smart Grids 2013, Transient performance analysis of a small-scale PV-PHS power plant fed by a SVPWM drive applied	4.3	15 290 147 0

(2011-2013)

79	Considerations on the modeling and control scheme of grid connected inverter with voltage support capability 2013 ,		3
78	Power Electronics for Smart Distribution Grids. <i>Green Energy and Technology</i> , 2013 , 493-523	0.6	
77	. IEEE Transactions on Industry Applications, 2012 , 48, 1154-1162	4.3	72
76	Design of a Flux-Switching Electrical Generator for Wind Turbine Systems. <i>IEEE Transactions on Industry Applications</i> , 2012 , 48, 1808-1816	4.3	42
75	Advanced hybrid dual loop control for multi-phases interleaved floating DC-DC converter for fuel cell applications 2012 ,		10
74	. IEEE Transactions on Vehicular Technology, 2012 , 61, 3430-3440	6.8	64
73	Utilizing a Smart Grid Monitoring System to Improve Voltage Quality of Customers. <i>IEEE Transactions on Smart Grid</i> , 2012 , 3, 738-743	10.7	32
72	LCL filter design and performance analysis for small wind turbine systems 2012,		17
71	Evaluating the long-term impact of a continuously increasing harmonic load demand on feeder level voltage distortion 2012 ,		5
70	Improving energy efficiency of cyber physical systems using multi-agent based control 2012,		3
69	Modeling and control of 4-phase floating interleaving boost converter 2011,		5
68	Multi agent based energy management control for commercial buildings 2011,		6
67	Aspects of the integration of alternative sources of energy for application in distributed generation systems 2011 ,		1
66	PEM Fuel Cell Stack Modeling for Real-Time Emulation in Hardware-in-the-Loop Applications. <i>IEEE Transactions on Energy Conversion</i> , 2011 , 26, 184-194	5.4	75
65	Power Bipolar Transistors 2011 , 29-41		
64	Smart Grid Initiative. IEEE Industry Applications Magazine, 2011, 17, 27-35	0.6	32
63	The New Frontier of Smart Grids. IEEE Industrial Electronics Magazine, 2011, 5, 49-63	6.2	229
62	Locating the origin of feeder level harmonics utilizing remote THD measurements 2011,		1

61	Smart-grid technologies and progress in Europe and the USA 2011 ,		27
60	Grid modernization efforts in the USA and Brazil - some common lessons based on the Smart Grid Initiative 2010 ,		5
59	Benefits of Power Electronic Interfaces for Distributed Energy Systems. <i>IEEE Transactions on Energy Conversion</i> , 2010 , 25, 901-908	5.4	189
58	Fuzzy logic controller development of a hybrid fuel cell-battery auxiliary power unit for remote applications 2010 ,		9
57	A Real-Time Sharing Reference Voltage for Hybrid Generation Power System 2010 ,		7
56	An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology 2010 ,		14
55	dSPACE based implementation of a grid connected smart inverter system 2010,		2
54	A conceptual scheme for cyber-physical systems based energy management in building structures 2010 ,		15
53	2009,		7
52	2009,		15
52 51	2009, Simulation and analysis of DQ frame and P+Resonant controls for voltage source inverter to distributed generation 2009,		15
	Simulation and analysis of DQ frame and P+Resonant controls for voltage source inverter to	5.4	
51	Simulation and analysis of DQ frame and P+Resonant controls for voltage source inverter to distributed generation 2009 , Experimental Evaluation of Active Filtering in a Single-Phase High-Frequency AC Microgrid. <i>IEEE</i>	5.4	4
51	Simulation and analysis of DQ frame and P+Resonant controls for voltage source inverter to distributed generation 2009, Experimental Evaluation of Active Filtering in a Single-Phase High-Frequency AC Microgrid. <i>IEEE Transactions on Energy Conversion</i> , 2009, 24, 673-682	5.4	4
51 50 49	Simulation and analysis of DQ frame and P+Resonant controls for voltage source inverter to distributed generation 2009, Experimental Evaluation of Active Filtering in a Single-Phase High-Frequency AC Microgrid. <i>IEEE Transactions on Energy Conversion</i> , 2009, 24, 673-682 Benefits of utilizing a Smart Grid monitoring system to improve feeder voltage 2009,	5.4	4 64 3
51 50 49 48	Simulation and analysis of DQ frame and P+Resonant controls for voltage source inverter to distributed generation 2009, Experimental Evaluation of Active Filtering in a Single-Phase High-Frequency AC Microgrid. IEEE Transactions on Energy Conversion, 2009, 24, 673-682 Benefits of utilizing a Smart Grid monitoring system to improve feeder voltage 2009, Reducing distribution transformer losses through the use of Smart Grid monitoring 2009, A Multiagent Fuzzy-Logic-Based Energy Management of Hybrid Systems. IEEE Transactions on		4 64 3 5
51 50 49 48 47	Simulation and analysis of DQ frame and P+Resonant controls for voltage source inverter to distributed generation 2009, Experimental Evaluation of Active Filtering in a Single-Phase High-Frequency AC Microgrid. IEEE Transactions on Energy Conversion, 2009, 24, 673-682 Benefits of utilizing a Smart Grid monitoring system to improve feeder voltage 2009, Reducing distribution transformer losses through the use of Smart Grid monitoring 2009, A Multiagent Fuzzy-Logic-Based Energy Management of Hybrid Systems. IEEE Transactions on Industry Applications, 2009, 45, 2123-2129 PV-Microgrid Operational Cost Minimization by Neural Forecasting and Heuristic Optimization		4 64 3 5

(2005-2008)

43	On-line fault diagnostic system for proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2008 , 175, 419-429	8.9	45
42	Energy cost analysis of a solar-hydrogen hybrid energy system for stand-alone applications. International Journal of Hydrogen Energy, 2008, 33, 2871-2879	6.7	86
41	A Bayesian network fault diagnostic system for proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2007 , 165, 267-278	8.9	52
40	Distributed Intelligent Energy Management System for a Single-Phase High-Frequency AC Microgrid. <i>IEEE Transactions on Industrial Electronics</i> , 2007 , 54, 97-109	8.9	268
39	Performance Evaluation of a Novel Hybrid Multipulse Rectifier for Utility Interface of Power Electronic Converters. <i>IEEE Transactions on Industrial Electronics</i> , 2007 , 54, 3030-3041	8.9	14
38	Three-Port Bidirectional Converter for Hybrid Fuel Cell Systems. <i>IEEE Transactions on Power Electronics</i> , 2007 , 22, 480-487	7.2	238
37	Power Bipolar Transistors 2007 , 27-39		
36	Bayesian Network Supervision on Fault Tolerant Fuel Cells. <i>Conference Record - IAS Annual Meeting</i> (IEEE Industry Applications Society), 2006 ,		4
35	Cost Considerations on Fuel Cell Renewable Energy Systems. <i>Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)</i> , 2006 ,		2
34	Fuzzy Modeling Approaches for the Prediction of Machine Utilization in Hard Rock Tunnel Boring Machines. <i>Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)</i> , 2006 ,		11
33	Programmable PFC based hybrid multipulse power rectifier for ultra clean power application. <i>IEEE Transactions on Power Electronics</i> , 2006 , 21, 959-966	7.2	25
32	Neural optimal control of PEM fuel cells with parametric CMAC networks. <i>IEEE Transactions on Industry Applications</i> , 2005 , 41, 237-245	4.3	61
31	Dynamic simulation and analysis of parallel self-excited induction generators for islanded wind farm systems. <i>IEEE Transactions on Industry Applications</i> , 2005 , 41, 1099-1106	4.3	22
30	. IEEE Transactions on Energy Conversion, 2005 , 20, 211-218	5.4	116
29	Fuzzy ARTMAP based forecast of renewable generation for a high frequency AC microgrid 2005,		5
28	Neural dynamic programming based online controller with a novel trim approach. <i>IET Control Theory and Applications</i> , 2005 , 152, 95-104		5
27	Full expandable model of parallel self-excited induction generators. <i>IET Electric Power Applications</i> , 2005 , 152, 96		14
26	ABET 2000 challenges in curricular compression: fluids and circuits - a pilot 2+1+1 approach. <i>IEEE Transactions on Education</i> , 2005 , 48, 503-512	2.1	

25	2005,		95
24	A Five-Phase Brushless Dc-Machine Direct Drive System. <i>EPE Journal (European Power Electronics and Drives Journal)</i> , 2004 , 14, 15-24	0.4	1
23	. IEEE Transactions on Industrial Electronics, 2004 , 51, 1103-1112	8.9	331
22	A comprehensive review for industrial applicability of artificial neural networks. <i>IEEE Transactions on Industrial Electronics</i> , 2003 , 50, 585-601	8.9	228
21	. IEEE Transactions on Industry Applications, 2003 , 39, 1136-1142	4.3	80
20	Parametric CMAC networks: fundamentals and applications of a fast convergence neural structure. <i>IEEE Transactions on Industry Applications</i> , 2003 , 39, 1551-1557	4.3	40
19	Neural-network-based prediction of mooring forces in floating production storage and offloading systems. <i>IEEE Transactions on Industry Applications</i> , 2002 , 38, 457-466	4.3	8
18	. IEEE Transactions on Industrial Electronics, 2002 , 49, 1154-1164	8.9	77
17	A novel competitive learning neural network based acoustic transmission system for oil-well monitoring. <i>IEEE Transactions on Industry Applications</i> , 2000 , 36, 484-491	4.3	6
16	Applications of Cellular Neural Networks for Shape from Shading Problem. <i>Lecture Notes in Computer Science</i> , 1999 , 51-63	0.9	3
15	Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. <i>IEEE Transactions on Power Electronics</i> , 1997 , 12, 87-95	7.2	313
14	Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. <i>IEEE Transactions on Industry Applications</i> , 1997 , 33, 956-965	4.3	185
13	Neural network-based estimation of power electronic waveforms. <i>IEEE Transactions on Power Electronics</i> , 1996 , 11, 383-389	7.2	19
12	. IEEE Transactions on Industry Applications, 1995 , 31, 620-629	4.3	127
11	Dynamic Interaction of an Intergrated Doubly-Fed Induction generator and a Fuel Cell connected to Gr	id	2
10	Advanced Active Filtering in a Single Phase High Frequency AC Microgrid		8
9	Application of a Modified Single-Phase P-Q Theory in the Control of Shunt and Series Active Filters in a 400 Hz Microgrid		10
8	State space modeling of parallel self-excited induction generators for wind farm simulation		4

LIST OF PUBLICATIONS

7	Optical sensor for transformer monitoring	2
6	A three-port bi-directional converter for hybrid fuel cell systems	58
5	A novel programmable PFC based hybrid rectifier for ultra clean power application	5
4	Programmable PFC Based Hybrid Multipulse Power Rectifier for Utility Interface of Power Electronic Converters	4
3	A high torque low-speed multi-phase brushless machine a perspective application for electric vehicles	1
2	Mobile telephony RF mapping using fuzzy-CMAC neural networks	2
1		16