Jian-Qiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9155714/publications.pdf Version: 2024-02-01

		26630	22832
226	14,137	56	112
papers	citations	h-index	g-index
239	239	239	18151
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>} . Journal of the American Chemical Society, 2016, 138, 3570-3578.	13.7	1,549
2	Ordered Mesoporous Black TiO ₂ as Highly Efficient Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2014, 136, 9280-9283.	13.7	878
3	Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510, 522-524.	27.8	677
4	A red anatase TiO2 photocatalyst for solar energy conversion. Energy and Environmental Science, 2012, 5, 9603.	30.8	379
5	Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nature Communications, 2017, 8, 15369.	12.8	366
6	A Promoted Charge Separation/Transfer System from Cu Single Atoms and C ₃ N ₄ Layers for Efficient Photocatalysis. Advanced Materials, 2020, 32, e2003082.	21.0	333
7	Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal–Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation. Environmental Science &: Technology, 2017, 51, 3911-3921.	10.0	331
8	A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. Journal of the American Chemical Society, 2017, 139, 7504-7512.	13.7	330
9	3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Applied Catalysis B: Environmental, 2021, 280, 119411.	20.2	324
10	Flexible and Wireâ€Shaped Microâ€Supercapacitor Based on Ni(OH) ₂ â€Nanowire and Ordered Mesoporous Carbon Electrodes. Advanced Functional Materials, 2014, 24, 3405-3412.	14.9	304
11	Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 32446-32451.	8.0	260
12	An Unusual Strong Visibleâ€Light Absorption Band in Red Anatase TiO ₂ Photocatalyst Induced by Atomic Hydrogenâ€Occupied Oxygen Vacancies. Advanced Materials, 2018, 30, 1704479.	21.0	231
13	Enhanced Photocatalytic Activity and Electron Transfer Mechanisms of Graphene/TiO ₂ with Exposed {001} Facets. Journal of Physical Chemistry C, 2011, 115, 23718-23725.	3.1	223
14	Aggregation-Free Gold Nanoparticles in Ordered Mesoporous Carbons: Toward Highly Active and Stable Heterogeneous Catalysts. Journal of the American Chemical Society, 2013, 135, 11849-11860.	13.7	203
15	Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. ACS Catalysis, 2014, 4, 2006-2015.	11.2	173
16	Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(<scp>vi</scp>). Environmental Science: Nano, 2017, 4, 1876-1886.	4.3	161
17	<i>Operando</i> X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy and Environmental Science, 2018, 11, 2945-2953.	30.8	157
18	[Co@Ge ₁₀] ^{3â^'} : An Intermetalloid Cluster with Archimedean Pentagonal Prismatic Structure. Angewandte Chemie - International Edition, 2009, 48, 1998-2002.	13.8	153

#	Article	IF	CITATIONS
19	Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nature Communications, 2019, 10, 1428.	12.8	149
20	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nature Communications, 2019, 10, 3755.	12.8	139
21	In Situ Growth of TiO ₂ in Interlayers of Expanded Graphite for the Fabrication of TiO ₂ –Graphene with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2011, 17, 8379-8387.	3.3	135
22	Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nature Communications, 2015, 6, 6957.	12.8	133
23	Stepâ€byâ€6tep Synthesis of the Endohedral Stannaspherene [lr@Sn ₁₂] ^{3â~`} via the Capped Cluster Anion [Sn ₉ lr(cod)] ^{3â~`} . Chemistry - A European Journal, 2010, 16, 1793-1798.	3.3	129
24	Formation of Ir?Rh and Ir?Mo Bonds by Using an Ancillaryortho-Carborane-1,2-diselenolato Ligand. Angewandte Chemie - International Edition, 2005, 44, 259-262.	13.8	124
25	Hierarchical Mn ₂ O ₃ Hollow Microspheres as Anode Material of Lithium Ion Battery and Its Conversion Reaction Mechanism Investigated by XANES. ACS Applied Materials & Interfaces, 2015, 7, 8488-8494.	8.0	119
26	lon-exchanged route synthesis of Fe2N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chemical Communications, 2013, 49, 3022.	4.1	116
27	Enhancing Bifunctional Electrocatalytic Activities via Metal d-Band Center Lift Induced by Oxygen Vacancy on the Subsurface of Perovskites. ACS Catalysis, 2020, 10, 4664-4670.	11.2	116
28	Simple and High Efficiency Phosphorescence Organic Light-Emitting Diodes with Codeposited Copper(I) Emitter. Chemistry of Materials, 2014, 26, 2368-2373.	6.7	108
29	A 3,2-Hydroxypyridinone-based Decorporation Agent that Removes Uranium from Bones In Vivo. Nature Communications, 2019, 10, 2570.	12.8	107
30	Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Research, 2014, 7, 731-742.	10.4	102
31	The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS. Corrosion Science, 2016, 106, 249-259.	6.6	101
32	Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation. Environmental Science & Technology, 2017, 51, 8606-8615.	10.0	98
33	Ultrastable Thorium Metal–Organic Frameworks for Efficient Iodine Adsorption. Inorganic Chemistry, 2020, 59, 4435-4442.	4.0	98
34	Thin carbon layer coated Ti ³⁺ -TiO ₂ nanocrystallites for visible-light driven photocatalysis. Nanoscale, 2015, 7, 5035-5045.	5.6	97
35	Searching General Sufficientâ€andâ€Necessary Conditions for Ultrafast Hydrogenâ€Evolving Electrocatalysis. Advanced Functional Materials, 2019, 29, 1900704.	14.9	94
36	Sol–gel preparation of efficient red phosphor Mg2TiO4:Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+. Journal of Materials Chemistry C, 2013, 1, 4327.	5.5	90

#	Article	IF	CITATIONS
37	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 322-332.	6.8	90
38	Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures. Corrosion Science, 2018, 143, 187-199.	6.6	90
39	Ratiometric Monitoring of Thorium Contamination in Natural Water Using a Dual-Emission Luminescent Europium Organic Framework. Environmental Science & Technology, 2019, 53, 332-341.	10.0	90
40	N-doping activated defective Co3O4 as an efficient catalyst for low-temperature methane oxidation. Applied Catalysis B: Environmental, 2020, 269, 118757.	20.2	85
41	Controlled synthesis of thorny anatase TiO ₂ tubes for construction of Ag–AgBr/TiO ₂ composites as highly efficient simulated solar-light photocatalyst. Journal of Materials Chemistry, 2012, 22, 2081-2088.	6.7	84
42	Smallâ€ S ized and Contacting Pt–WC Nanostructures on Graphene as Highly Efficient Anode Catalysts for Direct Methanol Fuel Cells. Chemistry - A European Journal, 2012, 18, 7443-7451.	3.3	83
43	Characterization of typical 3D pore networks of Jiulaodong formation shale using nano-transmission X-ray microscopy. Fuel, 2016, 170, 84-91.	6.4	82
44	Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 229, 1-7.	20.2	82
45	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56, 6715-6718.	4.1	81
46	Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 2015, 8, 3489-3496.	6.8	80
47	Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nature Materials, 2020, 19, 528-533.	27.5	80
48	Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1300600.	19.5	78
49	Porphyrin–carborane organometallic assemblies based on 1, 2-dicarba-closo-dodecaborane (12) ligands. Chemical Communications, 2006, , 162-164.	4.1	71
50	Catalytic conversion of biomass-derived levulinic acid into γ-valerolactone using iridium nanoparticles supported on carbon nanotubes. Chinese Journal of Catalysis, 2013, 34, 993-1001.	14.0	71
51	Synthesis of hierarchical TiO2 nanoflower with anatase–rutile heterojunction as Ag support for efficient visible-light photocatalytic activity. Dalton Transactions, 2013, 42, 11242.	3.3	68
52	Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Research, 2014, 7, 1280-1290.	10.4	66
53	Activation of Aryl Chlorides in Water under Phase-Transfer Agent-Free and Ligand-Free Suzuki Coupling by Heterogeneous Palladium Supported on Hybrid Mesoporous Carbon. ACS Catalysis, 2015, 5, 575-586.	11.2	65
54	Boosting the Iodine Adsorption and Radioresistance of Thâ€UiOâ€66 MOFs via Aromatic Substitution. Chemistry - A European Journal, 2021, 27, 1286-1291.	3.3	65

#	Article	IF	CITATIONS
55	Enhancing Thermocatalytic Activities by Upshifting the dâ€Band Center of Exsolved Coâ€Niâ€Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane. Angewandte Chemie - International Edition, 2021, 60, 15912-15919.	13.8	65
56	A novel phase-mixed MgTiO3–MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chemical Communications, 2013, 49, 8510.	4.1	62
57	A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials. Journal of Materials Chemistry A, 2013, 1, 1401-1406.	10.3	57
58	Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt. Faraday Discussions, 2016, 190, 327-338.	3.2	57
59	Synthesis and Structure of Heterometallic Clusters (IrCo2, IrFe) Containing Bridging 1,2-Dicarba-closo-dodecaborane-1,2-dichalocogenolato Ligands. Organometallics, 2005, 24, 826-830.	2.3	56
60	Titaniaâ€Supported Iridium Subnanoclusters as an Efficient Heterogeneous Catalyst for Direct Synthesis of Quinolines from Nitroarenes and Aliphatic Alcohols. Angewandte Chemie - International Edition, 2011, 50, 10216-10220.	13.8	56
61	Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nature Communications, 2021, 12, 2798.	12.8	55
62	Inâ€Situ Fabrication of Ag/Ag ₃ PO ₄ /Graphene Triple Heterostructure Visible‣ight Photocatalyst through Grapheneâ€Assisted Reduction Strategy. ChemCatChem, 2013, 5, 1359-1367.	3.7	54
63	Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides. Environmental Science & Technology, 2016, 50, 3852-3859.	10.0	53
64	Synthesis and Characterization of Heterometallic Clusters (Ir2Rh, Ir2W, Rh3) Containing 1,2-Dicarba-closo-dodecaborane(12)-1,2-dithiolate Chelate Ligands, [(B10H10)C2S2]2â^. Chemistry - A European Journal, 2005, 11, 7342-7350.	3.3	51
65	Active Coordinatively Unsaturated Manganese Monoxide-Containing Mesoporous Carbon Catalyst in Wet Peroxide Oxidation. ACS Catalysis, 2012, 2, 2577-2586.	11.2	51
66	Route to multicluster containing ancillary ortho-carborane-1,2-dithiolato ligands. Chemical Communications, 2005, , 4738.	4.1	50
67	Insight into the Role of Metal–Oxygen Bond and O 2p Hole in High-Voltage Cathode LiNi _{<i>x</i>} Mn _{2–<i>x</i>} O ₄ . Journal of Physical Chemistry C, 2017, 121, 16079-16087.	3.1	50
68	Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix. Scientific Reports, 2015, 5, 16100.	3.3	48
69	Highly Active Heterogeneous 3 nm Gold Nanoparticles on Mesoporous Carbon as Catalysts for Low-Temperature Selective Oxidation and Reduction in Water. ACS Catalysis, 2015, 5, 797-802.	11.2	48
70	5f Covalency Synergistically Boosting Oxygen Evolution of UCoO ₄ Catalyst. Journal of the American Chemical Society, 2022, 144, 416-423.	13.7	48
71	[Ag(Sn ₉ Sn ₉)] ^{5â^'} : A Homoleptic Silver Complex of A Dimeric Sn ₉ Zintl Anion. Angewandte Chemie - International Edition, 2010, 49, 6592-6595.	13.8	47
72	Lattice Defect-Enhanced Hydrogen Production in Nanostructured Hematite-Based Photoelectrochemical Device. ACS Applied Materials & Interfaces, 2012, 4, 2295-2302.	8.0	47

#	Article	IF	CITATIONS
73	3D Nitrogen, Sulfur-Codoped Carbon Nanomaterial-Supported Cobalt Oxides with Polyhedron-Like Particles Grafted onto Graphene Layers as Highly Active Bicatalysts for Oxygen-Evolving Reactions. ACS Applied Materials & Interfaces, 2018, 10, 7180-7190.	8.0	45
74	Formation of Cup-Shaped Metallic Clusters via Bâ^'H Activation at the B(3)/B(6) Site of anortho-Carborane-1,2-dichalcogenolato Ligand. Organometallics, 2006, 25, 3508-3514.	2.3	44
75	Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 14072-14078.	8.0	43
76	Extended X-ray Absorption Fine Structure and Density Functional Theory Studies on the Complexation Mechanism of Amidoximate Ligand to Uranyl Carbonate. Industrial & Engineering Chemistry Research, 2016, 55, 4224-4230.	3.7	43
77	Geometric Occupancy and Oxidation State Requirements of Cations in Cobalt Oxides for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 12525-12534.	8.0	43
78	Threeâ€Ðimensional Fe ₂ N@C Microspheres Grown on Reduced Graphite Oxide for Lithiumâ€Ion Batteries and the Li Storage Mechanism. Chemistry - A European Journal, 2015, 21, 3249-3256.	3.3	42
79	Effect of oxygen on the corrosion of SiC in LiF–NaF–KF molten salt. Corrosion Science, 2016, 103, 165-172.	6.6	42
80	On the possibility of severe corrosion of a Ni-W-Cr alloy in fluoride molten salts at high temperature. Corrosion Science, 2019, 149, 218-225.	6.6	42
81	Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides. Journal of Nuclear Materials, 2018, 503, 116-123.	2.7	39
82	Assessment of effects of Mg treatment on corrosivity of molten NaCl-KCl-MgCl2 salt with Raman and Infrared spectra. Corrosion Science, 2020, 164, 108350.	6.6	39
83	Characterization of organic matter pores in typical marine and terrestrial shales, China. Journal of Natural Gas Science and Engineering, 2018, 49, 56-65.	4.4	38
84	Molten salt-assisted synthesis of bulk CoOOH as a water oxidation catalyst. Journal of Energy Chemistry, 2020, 42, 5-10.	12.9	38
85	Syntheses and ¹ H NNR Spectra of Substituted Zinti Ions [Ge ₉ R <i>_n</i>] ^{(4â€"<i>n</i>)â€"} : Crystal Structures of [Ge ₉ R] ^{3â€"} (R = 2,4,6â€Me ₃ C ₆ H ₂ ,) Tj ETQq1 I	1 0.7 8431	4 BgBT /Ove
86	Chemishy, 2011, 2011, 4282-4289. Preparation, Structure, and Ethylene (Co)Polymerization Behavior of Groupâ€IV Metal Complexes with an [OSSO]â€Carborane Ligand. Chemistry - A European Journal, 2011, 17, 8576-8583.	3.3	37
87	Crystallinity Engineering of Hematite Nanorods for Highâ€Efficiency Photoelectrochemical Water Splitting. Advanced Science, 2015, 2, 1500005.	11.2	35
88	A Mixedâ€Valent Uranium Phosphonate Framework Containing U IV , U V , and U VI. Chemistry - A European Journal, 2016, 22, 11954-11957.	3.3	35
89	Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution. Nano Research, 2018, 11, 4796-4805.	10.4	35
90	ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution. Scientific Reports, 2015, 5, 8858.	3.3	34

#	Article	IF	CITATIONS
91	Effects of Cr3+ on the corrosion of SiC in LiF–NaF–KF molten salt. Corrosion Science, 2017, 114, 96-101.	6.6	34
92	The influence of triplet energy levels of bridging ligands on energy transfer processes in Ir(iii)/Eu(iii) dyads. Dalton Transactions, 2011, 40, 11410.	3.3	33
93	Syngas production by high temperature steam/CO ₂ coelectrolysis using solid oxide electrolysis cells. Faraday Discussions, 2015, 182, 341-351.	3.2	33
94	Template-Free Synthesis of Hematite Photoanodes with Nanostructured ATO Conductive Underlayer for PEC Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 36-40.	8.0	31
95	A Route to Multi-Clusters Containing Half-Sandwich Rh and Ir Complexes of Chelating 1,2-Dicarba-closo-dodecaborane(12)-1,2-dithiolate Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 3274-3282.	2.0	30
96	High-T _c ferromagnetism in a Co-doped ZnO system dominated by the formation of a zinc-blende type Co-rich ZnCoO phase. Chemical Communications, 2012, 48, 91-93.	4.1	30
97	Formation of Subnanometer Zr-WOx Clusters within Mesoporous W–Zr Mixed Oxides as Strong Solid Acid Catalysts for Friedel–Crafts Alkylation. Journal of Physical Chemistry C, 2014, 118, 6283-6290.	3.1	30
98	Efficient orange-red phosphorescent organic light-emitting diodes using an in situ synthesized copper(<scp>i</scp>) complex as the emitter. Journal of Materials Chemistry C, 2014, 2, 6333-6341.	5.5	30
99	Understanding the synergetic interaction within α-MoC/β-Mo2C heterostructured electrocatalyst. Journal of Energy Chemistry, 2019, 35, 66-70.	12.9	30
100	Syntheses, Characterization, and Ethylene Polymerization of Titanium Complexes with Double-Duty Tridentate [ONN] Ligands. Organometallics, 2012, 31, 3241-3247.	2.3	29
101	In Situ/Operando Capturing Unusual Ir ⁶⁺ Facilitating Ultrafast Electrocatalytic Water Oxidation. Advanced Functional Materials, 2021, 31, 2104746.	14.9	29
102	A New Concept of Radiation Detection Based on a Fluorochromic and Piezochromic Nanocluster. Journal of the American Chemical Society, 2022, 144, 3449-3457.	13.7	29
103	In-situ generation of Li2FeSiO4/C nanocomposite as cathode material for lithium ion battery. Electrochimica Acta, 2014, 133, 564-569.	5.2	28
104	The 3d–5d orbital repulsion of transition metals in oxyhydroxide catalysts facilitates water oxidation. Journal of Materials Chemistry A, 2019, 7, 14455-14461.	10.3	28
105	Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells. Small, 2015, 11, 5581-5588.	10.0	27
106	Regulation of Magnetic Behavior and Electronic Configuration in Mn-Doped ZnO Nanorods through Surface Modifications. Chemistry of Materials, 2012, 24, 1676-1681.	6.7	26
107	Unexpected structural complexity of thorium coordination polymers and polyoxo cluster built from simple formate ligands. Inorganic Chemistry Frontiers, 2020, 7, 260-269.	6.0	26
108	Porous core–shell CoMn2O4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS. Journal of Energy Chemistry, 2018, 27, 1637-1643.	12.9	25

#	Article	IF	CITATIONS
109	Multiscale characterization of three-dimensional pore structures in a shale gas reservoir: A case study of the Longmaxi shale in Sichuan basin, China. Journal of Natural Gas Science and Engineering, 2019, 66, 207-216.	4.4	25
110	Edge-selective decoration with ruthenium at graphitic nanoplatelets for efficient hydrogen production at universal pH. Nano Energy, 2020, 76, 105114.	16.0	25
111	Highly Active Surface Structure in Nanosized Spinel Cobalt-Based Oxides for Electrocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 14447-14458.	3.1	24
112	Achieving UV and X-ray Dual Photochromism in a Metal–Organic Hybrid via Structural Modulation. ACS Applied Materials & Interfaces, 2021, 13, 2745-2752.	8.0	24
113	<i>In Situ</i> Exploring of the Origin of the Enhanced Oxygen Evolution Reaction Efficiency of Metal(Co/Fe)–Organic Framework Catalysts Via Postprocessing. ACS Catalysis, 2022, 12, 3138-3148.	11.2	24
114	Decomposition of CO2 to carbon and oxygen under mild conditions over a zinc-modified zeolite. Chemical Communications, 2012, 48, 2325.	4.1	23
115	Graphene-like nanocomposites anchored by Ni ₃ S ₂ slices for Li-ion storage. RSC Advances, 2016, 6, 48083-48088.	3.6	23
116	3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. Nuclear Science and Techniques/Hewuli, 2016, 27, 1.	3.4	23
117	A Large Family of Centrosymmetric and Chiral f-Element-Bearing Iodate Selenates Exhibiting Coordination Number and Dimensional Reductions. Inorganic Chemistry, 2018, 57, 1676-1683.	4.0	23
118	Extraction of local coordination structure in a low-concentration uranyl system by XANES. Journal of Synchrotron Radiation, 2016, 23, 758-768.	2.4	22
119	Investigation of annealing-induced oxygen vacanciesÂin the Co-doped ZnO system by Co <i>K</i> -edge XANES spectroscopy. Journal of Synchrotron Radiation, 2010, 17, 600-605.	2.4	21
120	Synthesis, Structure, and Olefin Polymerization Behavior of Nickel Complexes with Carborane [S,C] or [S,S] Ligands. Organometallics, 2011, 30, 4935-4940.	2.3	21
121	Study on the Cr deposition and poisoning phenomenon at (La 0.6 Sr 0.4)(Co 0.2 Fe 0.8)O 3â^'Î′ electrode of solid oxide fuel cells by transmission X-ray microscopy. International Journal of Hydrogen Energy, 2014, 39, 15728-15734.	7.1	20
122	A Nanostructured Architecture for Reducedâ€Temperature Solid Oxide Fuel Cells. Advanced Energy Materials, 2015, 5, 1500375.	19.5	20
123	Silica direct evaporation: a size-controlled approach to SiC/carbon nanosheet composites as Pt catalyst supports for superior methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 24139-24147.	10.3	20
124	Insight into dynamic interaction of molten MgCl2-NaCl-KCl with impurity water via FPMD simulations. Journal of Molecular Liquids, 2020, 314, 113596.	4.9	20
125	Understanding the origin of high oxygen evolution reaction activity in the high Sr-doped perovskite. Chinese Journal of Catalysis, 2020, 41, 592-597.	14.0	20
126	A cationic thorium–organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chemical Science, 2021, 12, 15833-15842.	7.4	20

#	Article	IF	CITATIONS
127	Recent advances in the applications of thorium-based metal–organic frameworks and molecular clusters. Dalton Transactions, 2022, 51, 7376-7389.	3.3	19
128	High Activity of Nanoporousâ€5m _{0.2} Ce _{0.8} O _{2â€<i>δ</i>} @430L Composites for Hydrogen Electroâ€Oxidation in Solid Oxide Fuel Cells. Advanced Energy Materials, 2014, 4, 1400883.	19.5	18
129	High Oxide Ion Conduction in Molten Na ₂ W ₂ O ₇ . Advanced Electronic Materials, 2018, 4, 1800352.	5.1	18
130	Dynamic structural transformation induced by defects in nano-rod FeOOH during electrochemical water splitting. Journal of Materials Chemistry A, 2022, 10, 602-610.	10.3	18
131	Red emissive organic light-emitting diodes based on codeposited inexpensive Cu ^I complexes. Journal of Materials Chemistry C, 2015, 3, 5835-5843.	5.5	17
132	Molten salt synthesis of Nb-doped (La, Sr)FeO3 as the oxygen electrode for reversible solid oxide cells. Materials Letters, 2019, 245, 114-117.	2.6	17
133	3-Hydroxy-2-Pyrrolidinone as a Potential Bidentate Ligand for <i>in Vivo</i> Chelation of Uranyl with Low Cytotoxicity and Moderate Decorporation Efficacy: A Solution Thermodynamics, Structural Chemistry, and <i>in Vivo</i> Uranyl Removal Survey. Inorganic Chemistry, 2019, 58, 3349-3354.	4.0	17
134	Interpenetration Control in Thorium Metal–Organic Frameworks: Structural Complexity toward Iodine Adsorption. Inorganic Chemistry, 2021, 60, 5617-5626.	4.0	17
135	Promotion of the oxygen evolution reaction <i>via</i> the reconstructed active phase of perovskite oxide. Journal of Materials Chemistry A, 2022, 10, 2271-2279.	10.3	17
136	An Efficient Family of Misfit‣ayered Calcium Cobalt Oxide Catalyst for Oxygen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801281.	3.7	16
137	In Situ Reduction from Uranyl Ion into a Tetravalent Uranium Trimer and Hexamer Featuring Ion-Exchange Properties and the Alexandrite Effect. Inorganic Chemistry, 2018, 57, 6753-6761.	4.0	16
138	Size-dependent selective crystallization using an inorganic mixed-oxoanion system for lanthanide separation. Dalton Transactions, 2019, 48, 12808-12811.	3.3	16
139	Expansion of the structural diversity of f-element bearing molybdate iodates: synthesis, structures, and optical properties. Dalton Transactions, 2019, 48, 4823-4829.	3.3	16
140	[Ln 6 O 8] Clusterâ€Encapsulating Polyplumbites as New Polyoxometalate Members and Record Inorganic Anionâ€Exchange Materials for ReO 4 â~' Sequestration. Advanced Science, 2019, 6, 1900381.	11.2	16
141	Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO ₂ -saturated media for an aqueous Zn–CO ₂ system. Journal of Materials Chemistry A, 2020, 8, 14927-14934.	10.3	16
142	Single crystal titanate–zirconate nanoleaf: Synthesis, growth mechanism and enhanced photocatalytic hydrogen evolution properties. CrystEngComm, 2012, 14, 1874.	2.6	15
143	Lattice distortion and its role in the magnetic behavior of the Mn-doped ZnO system. New Journal of Physics, 2012, 14, 013033.	2.9	15
144	Adsorption of uranium (VI) onto amidoxime-functionalized ultra-high molecular weight polyethylene fibers from aqueous solution. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	3.4	15

#	Article	IF	CITATIONS
145	A Rechargeable Highâ€Temperature Molten Salt Iron–Oxygen Battery. ChemSusChem, 2018, 11, 1880-1886.	6.8	15
146	Hydrolytically Stable Zr-Based Metal–Organic Framework as a Highly Sensitive and Selective Luminescent Sensor of Radionuclides. Inorganic Chemistry, 2022, 61, 7467-7476.	4.0	15
147	Syntheses, reactions, and ethylene polymerization of titanium complexes with [N,N,S] ligands. Dalton Transactions, 2011, 40, 7730.	3.3	14
148	Structure of PtnNi Nanoparticles Electrocatalysts Investigated by X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 20584-20591.	3.1	14
149	A niobium-necked cluster [As ₃ Nb(As ₃ Sn ₃)] ^{3â^`} with aromatic Sn ₃ ^{2â^`} . Dalton Transactions, 2016, 45, 3874-3879.	3.3	14
150	Substitutional Disorder of SeO ₃ ^{2–} /IO ₃ [–] in the Crystalline Solid Matrix: Insights into the Fate of Radionuclides ⁷⁹ Se and ¹²⁹ I in the Environment. Inorganic Chemistry, 2017, 56, 3702-3708.	4.0	14
151	The structural evolution and tunable photoluminescence of f-element bearing coordination polymers of the 2,4,6-tri-α-pyridyl-1,3,5-triazine ligand. CrystEngComm, 2019, 21, 5059-5066.	2.6	14
152	Energyâ€Transfer Mechanisms in Ir ^{III} –Eu ^{III} Bimetallic Complexes. ChemPlusChem, 2013, 78, 852-859.	2.8	13
153	Confinement Effect on Ag Clusters in the Channels of Wellâ€Ordered Mesoporous TiO ₂ and their Enhanced Photocatalytic Performance. ChemCatChem, 2013, 5, 1354-1358.	3.7	13
154	Efficient Hydrogenation of Alkyl Formate to Methanol over Nanocomposite Copper/Alumina Catalysts. ChemCatChem, 2014, 6, 3075-3079.	3.7	13
155	Effects of FLiNaK infiltration on thermal expansion behavior of graphite. Journal of Materials Science, 2017, 52, 4621-4634.	3.7	13
156	Investigating microstructure of Longmaxi shale in Shizhu area, Sichuan Basin, by optical microscopy, scanning electron microscopy and micro-computed tomography. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	3.4	13
157	Effects of silicon carbide on the corrosion of metallic materials in molten LiF-NaF-KF salt. Corrosion Science, 2018, 143, 157-165.	6.6	13
158	Structural and thermodynamic stability of uranyl–deferiprone complexes and the removal efficacy of U(<scp>vi</scp>) at the cellular level. Dalton Transactions, 2018, 47, 8764-8770.	3.3	13
159	Tuning of the Network Dimensionality and Photoluminescent Properties in Homo- and Heteroleptic Lanthanide Coordination Polymers. Inorganic Chemistry, 2021, 60, 1359-1366.	4.0	13
160	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 17586-17594.	3.3	13
161	Amorphous Ni-B/SiO2 catalyst prepared by microwave heating and its catalytic activityin acrylonitrile hydrogenation. Journal of Chemical Technology and Biotechnology, 2003, 78, 512-517.	3.2	12
162	Probing the Influence of Acidity and Temperature to Th(IV) on Hydrolysis, Nucleation, and Structural Topology. Inorganic Chemistry, 2017, 56, 14198-14205.	4.0	12

#	Article	IF	CITATIONS
163	Rational synthesis of CaCo2O4 nanoplate as an earth-abundant electrocatalyst for oxygen evolution reaction. Journal of Energy Chemistry, 2019, 31, 125-131.	12.9	12
164	Emergence of a thorium–organic framework as a radiation attenuator for selective X-ray dosimetry. Chemical Communications, 2021, 57, 8131-8134.	4.1	12
165	A non-noble amorphous Co–Fe–B catalyst highly selective in liquid phase hydrogenation of crotonaldehyde to crotyl alcohol. New Journal of Chemistry, 2005, 29, 992.	2.8	11
166	Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in situ quick X-ray absorption spectroscopy. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	3.4	11
167	Unexpected Roles of Alkali-Metal Cations in the Assembly of Low-Valent Uranium Sulfate Molecular Complexes. Inorganic Chemistry, 2020, 59, 2348-2357.	4.0	11
168	Enhancing Thermocatalytic Activities by Upshifting the dâ€Band Center of Exsolved Coâ€Niâ€Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane. Angewandte Chemie, 2021, 133, 16048-16055.	2.0	11
169	Unexpected increasing Co valence state of an exsolved catalyst by Mo doping for enhanced oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 130681.	12.7	11
170	<i>A</i> '– <i>B</i> Intersite Cooperation-Enhanced Water Splitting in Quadruple Perovskite Oxide CaCu ₃ Ir ₄ O ₁₂ . Chemistry of Materials, 2021, 33, 9295-9305.	6.7	11
171	Molten Salt Thermal Treatment Synthesis of S-Doped V ₂ CT _{<i>x</i>} and Its Performance as a Cathode in Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 14482-14491.	8.0	11
172	Elucidation of the chemical environment for zinc species in an electron-rich zinc-incorporated zeolite. Journal of Solid State Chemistry, 2013, 202, 111-115.	2.9	10
173	Anionic uranyl oxyfluorides as a bifunctional platform for highly selective ion-exchange and photocatalytic degradation of organic dyes. Dalton Transactions, 2018, 47, 14908-14916.	3.3	10
174	Interaction mechanisms of a Hastelloy N-316L stainless steel couple in molten LiF-NaF-KF salt. Corrosion Science, 2020, 164, 108317.	6.6	10
175	Quasi-solid-state electrolyte for rechargeable high-temperature molten salt iron-air battery. Energy Storage Materials, 2021, 35, 142-147.	18.0	10
176	Three-dimensional microstructural characterization of solid oxide electrolysis cell with Ce0.8Gd0.2O2-infiltrated Ni/YSZ electrode using focused ion beam-scanning electron microscopy. Journal of Solid State Electrochemistry, 2021, 25, 1633-1644.	2.5	10
177	Ethylene polymerization by new chromium catalysts based on carborane [SSO] ligands. Dalton Transactions, 2013, 42, 9089.	3.3	9
178	Atomic uranium modified graphdiyne as catalytic material for hydrogen evolution reaction: An interfacial descriptor led mechanistic study. International Journal of Hydrogen Energy, 2020, 45, 24604-24614.	7.1	9
179	Molten Salt Synthesis of High-Performance, Nanostructured La0.6Sr0.4FeO3â~ʾĨ´ Oxygen Electrode of a Reversible Solid Oxide Cell. Materials, 2020, 13, 2267.	2.9	9
180	Dissolved valence state of iron fluorides and their effect on Ni-based alloy in FLiNaK salt. Corrosion Science, 2021, 192, 109794.	6.6	9

#	Article	IF	CITATIONS
181	Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage. International Journal of Green Energy, 2022, 19, 1583-1599.	3.8	9
182	Structural changes of Rh-Mn nanoparticles inside carbon nanotubes studied by X-ray absorption spectroscopy. Chinese Journal of Catalysis, 2014, 35, 1418-1427.	14.0	8
183	The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule. AIP Advances, 2016, 6, .	1.3	8
184	Uranium-Induced Changes in Crystal-Field and Covalency Effects of Th4+ in Th1–xUxO2 Mixed Oxides Probed by High-Resolution X-ray Absorption Spectroscopy. Inorganic Chemistry, 2018, 57, 11404-11413.	4.0	8
185	Emergence of Thorium-Based Polyoxo Clusters as a Platform for Selective X-ray Dosimetry. Inorganic Chemistry, 2021, 60, 18629-18633.	4.0	8
186	Controllable sites and high-capacity immobilization of uranium in Nd ₂ Zr ₂ O ₇ pyrochlore. Journal of Synchrotron Radiation, 2022, 29, 37-44.	2.4	8
187	Numerical simulation and analysis of the thermal stresses of a planar solid oxide electrolysis cell. International Journal of Green Energy, 2023, 20, 432-444.	3.8	8
188	A new application of the traditional Fenton process to gold cyanide synthesis using acetonitrile as a cyanide source. RSC Advances, 2016, 6, 16448-16451.	3.6	7
189	Th(H2O)(IVO3)2[IVII0.6V1.76O7(OH)]: A Mixed-Valent Iodine Compound Containing Periodate Stabilized by Crystallographically Compatible Lattice Sites. Inorganic Chemistry, 2016, 55, 12101-12104.	4.0	7
190	Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework. Chinese Journal of Catalysis, 2016, 37, 61-72.	14.0	7
191	Dense carbon film coated 316L via in-situ synthesized CaC2 in FLiNaK molten salts and its high performance of anti-corrosion property. Electrochimica Acta, 2019, 317, 232-239.	5.2	7
192	A Tunable Amorphous Heteronuclear Iron and Cobalt Imidazolate Framework Analogue for Efficient Oxygen Evolution Reactions. European Journal of Inorganic Chemistry, 2021, 2021, 702-707.	2.0	7
193	First-Principles Insight into the Effects of Intrinsic Oxygen Defects on Proton Conduction in Ruddlesden–Popper Oxides. Journal of Physical Chemistry Letters, 2021, 12, 11503-11510.	4.6	7
194	Freeâ€Standing Ultrathin Cobalt Nanosheets Synthesized by Means of In Situ Reduction and Interfaceâ€Directed Assembly and Their Magnetic Properties. ChemPlusChem, 2013, 78, 481-485.	2.8	6
195	Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems. Chemical Research in Chinese Universities, 2017, 33, 122-128.	2.6	6
196	Differential interplay between Ce and U on local structures of U1-xCexO2 solid solutions probed by X-ray absorption spectroscopy. Journal of Nuclear Materials, 2019, 515, 238-244.	2.7	6
197	Molten Salt Treated Cu Foam Catalyst for Selective Electrochemical CO 2 Reduction Reaction. ChemistrySelect, 2020, 5, 11927-11933.	1.5	6
198	Structural Complexity and Magnetic Orderings in a Large Family of 3d–4f Heterobimetallic Sulfates. Inorganic Chemistry, 2020, 59, 13398-13406.	4.0	6

#	Article	IF	CITATIONS
199	Thermodynamic and kinetic corrosion behavior of alloys in molten MgCl2–NaCl eutectic: FPMD simulations and electrochemical technologies. Solar Energy Materials and Solar Cells, 2022, 238, 111624.	6.2	6
200	Synchrotron radiation-based <i> </i> ₁ -norm regularization on micro-CT imaging in shale structure analysis. Journal of Inverse and Ill-Posed Problems, 2017, 25, 483-497.	1.0	5
201	Effect of concentration of Cr3+ in LiF-NaF-KF salt on the corrosion of SiC. Journal of Nuclear Materials, 2018, 509, 527-531.	2.7	5
202	Effect of exposing duration on the interaction between nickel-based alloy and SiC in molten LiF-NaF-KF salt. Journal of Nuclear Materials, 2019, 515, 276-283.	2.7	5
203	Investigation of Pore Structures in Shallow Longmaxi Shale, South China, via Large-Area Electron Imaging and Neutron Scattering Techniques. Energy & Fuels, 2020, 34, 7974-7984.	5.1	5
204	Growth of LaCoO ₃ crystals in molten salt: effects of synthesis conditions. CrystEngComm, 2021, 23, 671-677.	2.6	5
205	FPMD studies on the microstructures and transport properties of molten MgCl2-NaCl-KCl with addition of active metals. Solar Energy Materials and Solar Cells, 2021, 232, 111351.	6.2	5
206	Rational Design of Two-Layer Fe-Doped PrBa _{0.8} Ca _{0.2} Co ₂ O _{6â^îî} Double Perovskite Oxides for High-Performance Fuel Cell Cathodes. Journal of Physical Chemistry C, 2021, 125, 26448-26459.	3.1	5
207	Size-dependent selectivity of iron-based electrocatalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2022, 6, 736-743.	4.9	5
208	High-Temperature Magic-Angle Spin Nuclear Magnetic Resonance Reveals Sodium Ion-Doped Crystal-Phase Formation in FLiNaK Eutectic Salt Solidification. Journal of Physical Chemistry C, 2021, 125, 4704-4709.	3.1	4
209	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 315-315.	6.8	3
210	Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO ₄)(H ₂ 0) ₄ Cl]Cl·H ₂ 0. Inorganic Chemistry, 2018, 57, 6778-6782.	4.0	3
211	Fabrication of Lanthanum Strontium Manganite Ceramics via Agar Gel Casting and Solid State Sintering. Materials, 2019, 12, 848.	2.9	3
212	Study of the relationship between the local geometric structure and the stability of La0.6Sr0.4MnO3â^δ and La0.6Sr0.4FeO3â^δ electrodes. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	3.4	3
213	Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers. Dalton Transactions, 2021, 50, 14325-14331.	3.3	3
214	K ⁺ extraction induced phase evolution of KFeO ₂ . Physical Chemistry Chemical Physics, 2022, 24, 4620-4625.	2.8	3
215	Atomic controllable anchoring of uranium into zirconate pyrochlore with ultrahigh loading capacity. Chemical Communications, 2022, 58, 3469-3472.	4.1	3
216	Insights into the new 3d–5f heterometallic quaternary fluorides: Synthesis, crystal structures, spectroscopic properties, and thermodynamic stability. Inorganica Chimica Acta, 2019, 487, 362-368.	2.4	2

#	ARTICLE	IF	CITATIONS
217	Unusual Heterometallic Cation-Cation Interactions in Uranyl Zinc Germanates. European Journal of Inorganic Chemistry, 2020, 2020, 2182-2185.	2.0	2
218	Atomic-level understanding layer-by-layer formation process of TiCx on carbon film. Electrochimica Acta, 2021, 367, 137514.	5.2	2
219	Unveiling the new function of uranyl molecular clusters as fluorometric sensors for UV and X-ray dosimetry. Dalton Transactions, 2022, 51, 3041-3045.	3.3	2
220	Polyoxometalates: [Ln ₆ O ₈] Clusterâ€Encapsulating Polyplumbites as New Polyoxometalate Members and Record Inorganic Anionâ€Exchange Materials for ReO ₄ ^{â^`} Sequestration (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970105.	11.2	1
221	Local structure of uranium in polycrystalline α-U2N3+δfilm probed by X-ray absorption spectroscopy. Journal of Nuclear Materials, 2020, 542, 152404.	2.7	1
222	Efficiently immobilizing uranium (VI) by oxidized carbon foam. Environmental Science and Pollution Research, 2021, 28, 50471-50479.	5.3	1
223	Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Advances, 2022, 12, 12878-12881.	3.6	1
224	Synthesis, characterization, and olefin polymerization of half-sandwich Ir, Rh, Ru metallacycle enclosing a nickel in the center. Journal of Coordination Chemistry, 2017, 70, 1791-1799.	2.2	0
225	Shale Microstructure Prediction with Nonsmooth Sparse Regularizing X-Ray CT Imaging. Numerical Functional Analysis and Optimization, 2020, 41, 1717-1727.	1.4	0
226	X-ray Absorption Fine Structure Spectroscopy for Characterizing Nanostructures. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 307-333.	0.1	0