
Jeremy K Caves Rugenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9155505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drier Winters Drove Cenozoic Open Habitat Expansion in North America. AGU Advances, 2022, 3, .	2.3	9
2	Effects of the Pliensbachian–Toarcian Boundary Event on Carbonate Productivity of a Tethyan Platform and Slope. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	2
3	High-Resolution Stable Isotope Paleotopography of the John Day Region, Oregon, United States. Frontiers in Earth Science, 2021, 9, .	0.8	9
4	Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion. Nature Geoscience, 2021, 14, 211-216.	5.4	70
5	Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China. Earth-Science Reviews, 2021, 216, 103572.	4.0	25
6	Snowfall-albedo feedbacks could have led to deglaciation of snowball Earth starting from mid-latitudes. Communications Earth & Environment, 2021, 2, .	2.6	2
7	lsotope mass-balance constraints preclude that mafic weathering drove Neogene cooling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
8	Controls on Physical and Chemical Denudation in a Mixed Carbonate‧iliciclastic Orogen. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006064.	1.0	6
9	What goes down must come up. Nature Geoscience, 2020, 13, 5-7.	5.4	0
10	Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle. Earth-Science Reviews, 2020, 209, 103298.	4.0	59
11	Spatial pattern of super-greenhouse warmth controlled by elevated specific humidity. Nature Geoscience, 2020, 13, 739-744.	5.4	18
12	The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. Geology, 2020, 48, 728-732.	2.0	48
13	Stable isotope evidence for rapid uplift of the central Apennines since the late Pliocene. Earth and Planetary Science Letters, 2020, 544, 116376.	1.8	12
14	Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain. Climate of the Past, 2020, 16, 227-243.	1.3	7
15	Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature, 2019, 571, 99-102.	13.7	114
16	Response to Comment on "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene― Science, 2019, 365, .	6.0	3
17	Atmospheric flow deflection in the late Cenozoic Sierra Nevada. Earth and Planetary Science Letters, 2019, 518, 76-85.	1.8	8
18	Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 2019, 363, .	6.0	155

JEREMY K CAVES RUGENSTEIN

#	Article	IF	CITATIONS
19	Modeling the consequences of land plant evolution on silicate weathering. Numerische Mathematik, 2019, 319, 1-43.	0.7	51
20	Deep mantle roots and continental emergence: implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion. International Geology Review, 2018, 60, 431-448.	1.1	58
21	Warm and cold wet states in the western United States during the Pliocene–Pleistocene. Geology, 2018, 46, 355-358.	2.0	45
22	The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective. Earth-Science Reviews, 2018, 185, 1129-1156.	4.0	71
23	Concentration–discharge patterns of weathering products from global rivers. Acta Geochimica, 2017, 36, 405-409.	0.7	21
24	Constraining basin thermal history and petroleum generation using palaeoclimate data in the Piceance Basin, Colorado. Basin Research, 2017, 29, 542-553.	1.3	5
25	Late Miocene Uplift of the Tian Shan and Altai and Reorganization of Central Asia Climate. GSA Today, 2017, , .	1.1	10
26	Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth and Planetary Science Letters, 2016, 450, 152-163.	1.8	121
27	The Neogene de-greening of Central Asia. Geology, 2016, 44, 887-890.	2.0	54
28	Differential weathering of basaltic and granitic catchments from concentration–discharge relationships. Geochimica Et Cosmochimica Acta, 2016, 190, 265-293.	1.6	113
29	Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous: REPLY. Geology, 2016, 44, e379-e379.	2.0	6
30	A mechanistic analysis of early Eocene latitudinal gradients of isotopes in precipitation. Geophysical Research Letters, 2015, 42, 8216-8224.	1.5	13
31	Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology, 2015, 43, 287-290.	2.0	76
32	Role of the westerlies in Central Asia climate over the Cenozoic. Earth and Planetary Science Letters, 2015, 428, 33-43.	1.8	153
33	Oxygen isotope mass-balance constraints on Pliocene sea level and East Antarctic Ice Sheet stability. Geology, 2015, 43, 879-882.	2.0	45
34	Quantifying the isotopic â€~continental effect'. Earth and Planetary Science Letters, 2014, 406, 123-133.	1.8	106
35	Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence. Numerische Mathematik, 2014, 314, 1171-1201.	0.7	68
36	Integrating Collaboration, Adaptive Management, and Scenario-Planning: Experiences at Las Cienegas National Conservation Area. Ecology and Society, 2013, 18, .	1.0	29

#	Article	IF	CITATIONS
37	A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports, 2012, 2, 413.	1.6	104
38	Members Promote Climate Science on Capitol Hill. Eos, 2011, 92, 102-102.	0.1	0
39	AGU Members Press for Continued Federal Support for Basic Research on Capitol Hill. Eos, 2011, 92, 156-156.	0.1	Ο
40	AGU Selects Two Congressional Science Fellows. Eos, 2011, 92, 164-164.	0.1	0
41	Successional changes in soil and hyporheic nitrogen fertility on an alluvial flood plain: implications for riparian vegetation. Aquatic Sciences, 2010, 72, 519-532.	0.6	4