
Ken-Ichiro Seino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9154950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells. Cancer Research, 2016, 76, 6030-6042.	0.9	142
2	Chemotherapy-Derived Inflammatory Responses Accelerate the Formation of Immunosuppressive Myeloid Cells in the Tissue Microenvironment of Human Pancreatic Cancer. Cancer Research, 2015, 75, 2629-2640.	0.9	123
3	Interleukin-34, a comprehensive review. Journal of Leukocyte Biology, 2018, 104, 931-951.	3.3	96
4	Macrophage activation syndrome and COVID-19. Inflammation and Regeneration, 2020, 40, 19.	3.7	94
5	High co-expression of IL-34 and M-CSF correlates with tumor progression and poor survival in lung cancers. Scientific Reports, 2018, 8, 418.	3.3	88
6	Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nature Communications, 2016, 7, 11471.	12.8	81
7	Interleukin 34, from pathogenesis to clinical applications. Cytokine, 2017, 99, 139-147.	3.2	56
8	Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation. Journal of Radiation Research, 2017, 58, 446-455.	1.6	44
9	Transcriptional regulator Bhlhe40 works as a cofactor of T-bet in the regulation of IFN-γ production in <i>i</i> NKT cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3394-402.	7.1	43
10	Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells. International Immunology, 2011, 23, 65-74.	4.0	37
11	Enhanced IL-34 expression in Nivolumab-resistant metastatic melanoma. Inflammation and Regeneration, 2018, 38, 3.	3.7	35
12	Myeloid molecular characteristics of human $\hat{I}^{3}\hat{I}^{T}$ cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunology, Immunotherapy, 2015, 64, 941-949.	4.2	33
13	A role for IL-34 in osteolytic disease of multiple myeloma. Blood Advances, 2019, 3, 541-551.	5.2	25
14	Efficient generation of thymic epithelium from induced pluripotent stem cells that prolongs allograft survival. Scientific Reports, 2020, 10, 224.	3.3	24
15	New Immunosuppressive Cell Therapy to Prolong Survival of Induced Pluripotent Stem Cell–Derived Allografts. Transplantation, 2015, 99, 2301-2310.	1.0	23
16	A Clinical Trial With Adoptive Transfer of Ex Vivo-induced, Donor-specific Immune-regulatory Cells in Kidney Transplantation—A Second Report. Transplantation, 2020, 104, 2415-2423.	1.0	22
17	Immune reaction and regulation in transplantation based on pluripotent stem cell technology. Inflammation and Regeneration, 2020, 40, 12.	3.7	20
18	Potential anti-lymphoma effect of M-CSFR inhibitor in adult T-cell leukemia/lymphoma. Journal of Clinical and Experimental Hematopathology: JCEH, 2018, 58, 152-160.	0.8	17

KEN-ICHIRO SEINO

#	Article	IF	CITATIONS
19	Prognostic value of IL-34 in colorectal cancer patients. Immunological Medicine, 2019, 42, 169-175.	2.6	17
20	Interleukin-34 expression in ovarian cancer: a possible correlation with disease progression. International Immunology, 2020, 32, 175-186.	4.0	17
21	Invariant natural killer T cell deficiency leads to the development of spontaneous liver inflammation dependent on Î ³ ÎT cells in mice. Journal of Gastroenterology, 2015, 50, 1124-1133.	5.1	15
22	Interleukin-34 Limits the Therapeutic Effects of Immune Checkpoint Blockade. IScience, 2020, 23, 101584.	4.1	15
23	Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S. Human Cell, 2016, 29, 58-66.	2.7	14
24	Induction of Macrophage-Like Immunosuppressive Cells from Mouse ES Cells That Contribute to Prolong Allogeneic Graft Survival. PLoS ONE, 2014, 9, e111826.	2.5	13
25	Enhanced expression of IL-34 in an inflammatory cyst of the submandibular gland: a case report. Inflammation and Regeneration, 2018, 38, 12.	3.7	12
26	IL-34, the rationale for its expression in physiological and pathological conditions. Seminars in Immunology, 2021, 54, 101517.	5.6	12
27	Interleukin-34 contributes to poor prognosis in triple-negative breast cancer. Breast Cancer, 2020, 27, 1198-1204.	2.9	11
28	Transcriptomic Features of T Cell-Barren Tumors Are Conserved Across Diverse Tumor Types. Frontiers in Immunology, 2020, 11, 57.	4.8	8
29	Establishment of Human Leukocyte Antigen-Mismatched Immune Responses after Transplantation of Human Liver Bud in Humanized Mouse Models. Cells, 2021, 10, 476.	4.1	8
30	Flow cytometric identification and cell-line establishment of macrophages in naked mole-rats. Scientific Reports, 2019, 9, 17981.	3.3	7
31	Establishment of an experimental model for MHC homo-to-hetero transplantation. Scientific Reports, 2020, 10, 13560.	3.3	5
32	An optimized protocol for patient-derived xenograft in humanized mice to evaluate the role of IL-34 in immunotherapeutic resistance. STAR Protocols, 2021, 2, 100460.	1.2	5
33	Evaluation of immunosuppression protocols for MHC-matched allogeneic iPS cell-based transplantation using a mouse skin transplantation model. Inflammation and Regeneration, 2022, 42, 4.	3.7	5
34	Bromodomain-containing protein 4 regulates interleukin-34 expression in mouse ovarian cancer cells. Inflammation and Regeneration, 2020, 40, 25.	3.7	4
35	Induction of macrophage-like immunosuppressive cells from common marmoset ES cells by stepwise differentiation with DZNep. Scientific Reports, 2020, 10, 12625.	3.3	3
36	Steps towards COVID-19 suppression. Inflammation and Regeneration, 2020, 40, 13.	3.7	3

#	Article	IF	CITATIONS
37	α-MSH stimulation contributes to TGF-β1 production via MC1R-MITF signaling pathway in melanoma cell. Inflammation and Regeneration, 2015, 35, 244-254.	3.7	2
38	Macrophage-like iPS-derived Suppressor Cells Reduce Th1-mediated Immune Response to a Retinal Antigen. Current Eye Research, 2021, , 1-9.	1.5	0