
Francisco M Nadal-NicolÃ;s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9154635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High-Density Narrow-Field Inhibitory Retinal Interneuron with Direct Coupling to Müller Glia. Journal of Neuroscience, 2021, 41, 6018-6037.	3.6	11
2	Establishing the ground squirrel as a superb model for retinal ganglion cell disorders and optic neuropathies. Laboratory Investigation, 2021, 101, 1289-1303.	3.7	7
3	True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. ELife, 2020, 9, .	6.0	75
4	Melanopsin+RGCs Are fully Resistant to NMDA-Induced Excitotoxicity. International Journal of Molecular Sciences, 2019, 20, 3012.	4.1	18
5	Topical bromfenac transiently delays axotomy-induced retinal ganglion cell loss. Experimental Eye Research, 2019, 182, 156-159.	2.6	2
6	Nerve fibre layer degeneration and retinal ganglion cell loss long term after optic nerve crush or transection in adult mice. Experimental Eye Research, 2018, 170, 40-50.	2.6	46
7	The aging rat retina: from function to anatomy. Neurobiology of Aging, 2018, 61, 146-168.	3.1	80
8	Human Wharton's jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Scientific Reports, 2018, 8, 16299.	3.3	50
9	Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Experimental Eye Research, 2018, 174, 93-97.	2.6	23
10	Pigment Epithelium-derived Factor Protects Retinal Pigment Epithelial Cells Against Cytotoxicity "In Vitro― Advances in Experimental Medicine and Biology, 2018, 1074, 457-464.	1.6	17
11	The senescent vision: dysfunction or neuronal loss?. Aging, 2018, 11, 15-17.	3.1	6
12	MicroRNA regulation in an animal model of acute ocular hypertension. Acta Ophthalmologica, 2017, 95, e10-e21.	1.1	28
13	Microglial dynamics after axotomy-induced retinal ganglion cell death. Journal of Neuroinflammation, 2017, 14, 218.	7.2	51
14	Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension. Frontiers in Neuroscience, 2017, 11, 235.	2.8	74
15	Melanopsin-Containing or Non-Melanopsin–Containing Retinal Ganglion Cells Response to Acute Ocular Hypertension With or Without Brain-Derived Neurotrophic Factor Neuroprotection. , 2016, 57, 6652.		34
16	Apoptotic Retinal Ganglion Cell Death After Optic Nerve Transection or Crush in Mice: Delayed RGC Loss With BDNF or a Caspase 3 Inhibitor. , 2016, 57, 81.		113
17	Ketorolac Administration Attenuates Retinal Ganglion Cell Death After Axonal Injury. , 2016, 57, 1183.		16
18	Topical Treatment With Bromfenac Reduces Retinal Gliosis and Inflammation After Optic Nerve Crush. , 2016, 57, 6098.		16

#	Article	IF	CITATIONS
19	Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Scientific Reports, 2016, 6, 38499.	3.3	23
20	Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an an animal model of glaucoma. Scientific Reports, 2016, 6, 27532.	3.3	54
21	Melanopsin expression is an indicator of the well-being of melanopsin-expressing retinal ganglion cells but not of their viability. Neural Regeneration Research, 2016, 11, 1243.	3.0	13
22	Long-Term Effect of Optic Nerve Axotomy on the Retinal Ganglion Cell Layer. , 2015, 56, 6095.		96
23	Inherited Photoreceptor Degeneration Causes the Death of Melanopsin-Positive Retinal Ganglion Cells and Increases Their Coexpression of Brn3a. , 2015, 56, 4592.		38
24	Comparison of Retinal Nerve Fiber Layer Thinning and Retinal Ganglion Cell Loss After Optic Nerve Transection in Adult Albino Rats. , 2015, 56, 4487.		66
25	Transient Downregulation of Melanopsin Expression After Retrograde Tracing or Optic Nerve Injury in Adult Rats. , 2015, 56, 4309.		25
26	BDNF Rescues RGCs But Not Intrinsically Photosensitive RGCs in Ocular Hypertensive Albino Rat Retinas. , 2015, 56, 1924.		60
27	Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors. Experimental Eye Research, 2015, 132, 17-33.	2.6	50
28	Two methods to trace retinal ganglion cells with fluorogold: From the intact optic nerve or by stereotactic injection into the optic tract. Experimental Eye Research, 2015, 131, 12-19.	2.6	31
29	Retinal neurodegeneration in experimental glaucoma. Progress in Brain Research, 2015, 220, 1-35.	1.4	63
30	Retino-retinal projection in juvenile and young adult rats and mice. Experimental Eye Research, 2015, 134, 47-52.	2.6	21
31	Identifying specific RGC types may shed light on their idiosyncratic responses to neuroprotection. Neural Regeneration Research, 2015, 10, 1228.	3.0	22
32	Ocular hypertension in adult rodents does not affect non-RGC neurons in the ganglion cell layer but results in severe loss of cone-photorreceptors. Acta Ophthalmologica, 2015, 93, n/a-n/a.	1.1	0
33	A Novel In Vivo Model of Focal Light Emitting Diode-Induced Cone-Photoreceptor Phototoxicity: Neuroprotection Afforded by Brimonidine, BDNF, PEDF or bFGF. PLoS ONE, 2014, 9, e113798.	2.5	61
34	Displaced retinal ganglion cells in albino and pigmented rats. Frontiers in Neuroanatomy, 2014, 8, 99.	1.7	76
35	Sectorial loss of retinal ganglion cells in inherited photoreceptor degeneration is due to RGC death. British Journal of Ophthalmology, 2014, 98, 396-401.	3.9	29
36	Temporal response of the phagocytic microglia in the axotomized rat retina: optic nerve crush vs. transection. Acta Ophthalmologica, 2014, 92, 0-0.	1.1	1

#	Article	IF	CITATIONS
37	Number and Distribution of Mouse Retinal Cone Photoreceptors: Differences between an Albino (Swiss) and a Pigmented (C57/BL6) Strain. PLoS ONE, 2014, 9, e102392.	2.5	103
38	Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in the adult albino rat. Experimental Eye Research, 2013, 108, 84-93.	2.6	70
39	Metabolomic Changes in the Rat Retina After Optic Nerve Crush. , 2013, 54, 4249.		37
40	Whole Number, Distribution and Co-Expression of Brn3 Transcription Factors in Retinal Ganglion Cells of Adult Albino and Pigmented Rats. PLoS ONE, 2012, 7, e49830.	2.5	131
41	Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas. Progress in Retinal and Eye Research, 2012, 31, 1-27.	15.5	167
42	Retinal neuronal death caused by ocular hypertension. Acta Ophthalmologica, 2012, 90, 0-0.	1.1	0
43	Brain derived neurotrophic factor maintains Brn3a expression in axotomized rat retinal ganglion cells. Experimental Eye Research, 2011, 92, 260-267.	2.6	74
44	Axotomy-induced retinal ganglion cell death in adult mice: Quantitative and topographic time course analyses. Experimental Eye Research, 2011, 92, 377-387.	2.6	136
45	Automated Quantification and Topographical Distribution of the Whole Population of S- and L-Cones in Adult Albino and Pigmented Rats. , 2010, 51, 3171.		71
46	Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: A comparative study. Vision Research, 2009, 49, 2808-2825.	1.4	63
47	Brn3a as a Marker of Retinal Ganglion Cells: Qualitative and Quantitative Time Course Studies in Nail^ve and Optic Nerve–Injured Retinas. , 2009, 50, 3860.		465
48	Immediate Upregulation of Proteins Belonging to Different Branches of the Apoptotic Cascade in the Retina after Optic Nerve Transection and Optic Nerve Crush. , 2009, 50, 424.		76