
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9154530/publications.pdf Version: 2024-02-01

BINC-74111

#	Article	IF	CITATIONS
1	Effects of different surfactants on the degradation of petroleum hydrocarbons by mixedâ€bacteria. Journal of Chemical Technology and Biotechnology, 2022, 97, 208-217.	3.2	6
2	High-solid ethylenediamine pretreatment to fractionate new lignin streams from lignocellulosic biomass. Chemical Engineering Journal, 2022, 427, 130962.	12.7	38
3	Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion. Bioresource Technology, 2022, 347, 126367.	9.6	14
4	Artificial nondirectional site-specific recombination systems. IScience, 2022, 25, 103716.	4.1	1
5	The TelN/tos-assisted precise targeting of chromosome segments (TAPE). Journal of Advanced Research, 2022, 41, 169-177.	9.5	3
6	Microbial Adaptation to Enhance Stress Tolerance. Frontiers in Microbiology, 2022, 13, 888746.	3.5	31
7	Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations. Science China Life Sciences, 2022, 65, 1703-1717.	4.9	7
8	Transmembrane transport process and endoplasmic reticulum function facilitate the role of gene cellb in cellulase production of Trichoderma reesei. Microbial Cell Factories, 2022, 21, 90.	4.0	6
9	Intron retention coupled with nonsense-mediated decay is involved in cellulase biosynthesis in cellulolytic fungi. , 2022, 15, 53.		1
10	Identifying ligninolytic bacteria for lignin valorization to bioplastics. Bioresource Technology, 2022, 358, 127383.	9.6	14
11	Microbial Valorization of Lignin to Bioplastic by Genome-Reduced Pseudomonas putida. Frontiers in Microbiology, 2022, 13, .	3.5	8
12	Bacterial conversion routes for lignin valorization. Biotechnology Advances, 2022, 60, 108000.	11.7	16
13	Amine-based pretreatments for lignocellulose fractionation and lignin valorization: a review. Green Chemistry, 2022, 24, 5460-5478.	9.0	19
14	Breakthrough in efficient cloning and activation of large cryptic biosynthetic gene clusters from high GC actinobacteria. Synthetic and Systems Biotechnology, 2022, 7, 1064-1065.	3.7	0
15	Lignin valorization for protocatechuic acid production in engineered <i>Saccharomyces cerevisiae</i> . Green Chemistry, 2021, 23, 6515-6526.	9.0	31
16	Elucidating the mechanisms of enhanced lignin bioconversion by an alkali sterilization strategy. Green Chemistry, 2021, 23, 4697-4709.	9.0	20
17	Dissecting Cellular Function and Distribution of \hat{I}^2 -Glucosidases in Trichoderma reesei. MBio, 2021, 12, .	4.1	23
18	Yeast autonomously replicating sequence (ARS): Identification, function, and modification. Engineering in Life Sciences, 2021, 21, 464-474.	3.6	1

#	Article	IF	CITATIONS
19	Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities. Frontiers in Bioengineering and Biotechnology, 2021, 9, 689797.	4.1	34
20	Engineering synthetic microbial consortium for efficient conversion of lactate from glucose and xylose to generate electricity. Biochemical Engineering Journal, 2021, 172, 108052.	3.6	7
21	Glutamine involvement in nitrogen regulation of cellulase production in fungi. Biotechnology for Biofuels, 2021, 14, 199.	6.2	7
22	Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Frontiers in Immunology, 2021, 12, 777665.	4.8	57
23	Evaluation of PET Degradation Using Artificial Microbial Consortia. Frontiers in Microbiology, 2021, 12, 778828.	3.5	31
24	Protein acetylation regulates xylose metabolism during adaptation of Saccharomyces cerevisiae. Biotechnology for Biofuels, 2021, 14, 241.	6.2	2
25	Temperature profiled simultaneous saccharification and co-fermentation of corn stover increases ethanol production at high solid loading. Energy Conversion and Management, 2020, 205, 112344.	9.2	29
26	Ethylenediamine Enhances Ionic Liquid Pretreatment Performance at High Solid Loading. ACS Sustainable Chemistry and Engineering, 2020, 8, 13007-13018.	6.7	27
27	Chromosome drives via CRISPR-Cas9 in yeast. Nature Communications, 2020, 11, 4344.	12.8	24
28	Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast. Biotechnology for Biofuels, 2020, 13, 193.	6.2	13
29	Engineering budding yeast for the production of coumarins from lignin. Biochemical Engineering Journal, 2020, 160, 107634.	3.6	24
30	Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metabolic Engineering, 2020, 61, 160-170.	7.0	57
31	Multilevel Defense System (MDS) Relieves Multiple Stresses for Economically Boosting Ethanol Production of Industrial <i>Saccharomyces cerevisiae</i> . ACS Energy Letters, 2020, 5, 572-582.	17.4	31
32	Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin. Energy, 2020, 195, 117076.	8.8	33
33	SCRaMbLEing of a Synthetic Yeast Chromosome with Clustered Essential Genes Reveals Synthetic Lethal Interactions. ACS Synthetic Biology, 2020, 9, 1181-1189.	3.8	17
34	Sequencing barcode construction and identification methods based on block error-correction codes. Science China Life Sciences, 2020, 63, 1580-1592.	4.9	12
35	Alkali-Based Pretreatment-Facilitated Lignin Valorization: A Review. Industrial & Engineering Chemistry Research, 2020, 59, 16923-16938.	3.7	70
36	The effect of autonomously replicating sequences on gene expression in saccharomyces cerevisiae. Biochemical Engineering Journal, 2019, 149, 107250.	3.6	8

#	Article	IF	CITATIONS
37	Biochemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 929-993.	4.4	1
38	Lignin valorization meets synthetic biology. Engineering in Life Sciences, 2019, 19, 463-470.	3.6	19
39	Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies. Renewable Energy, 2019, 139, 1176-1183.	8.9	32
40	Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations. Engineering, 2019, 5, 287-295.	6.7	42
41	Hydrothermal pretreatment for deconstruction of plant cell wall: Part I. Effect on ligninâ€earbohydrate complex. AICHE Journal, 2018, 64, 1938-1953.	3.6	26
42	Hydrothermal pretreatment for deconstruction of plant cell wall: Part II. Effect on cellulose structure and bioconversion. AICHE Journal, 2018, 64, 1954-1964.	3.6	13
43	Identification and manipulation of a novel locus to improve cell tolerance to short-chain alcohols in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 589-598.	3.0	5
44	Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnology for Biofuels, 2018, 11, 118.	6.2	48
45	Gene repression via multiplex gRNA strategy in Y. lipolytica. Microbial Cell Factories, 2018, 17, 62.	4.0	57
46	Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 107.	6.2	21
47	Rapid and Efficient CRISPR/Cas9-Based Mating-Type Switching of Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2018, 8, 173-183.	1.8	39
48	Antifungal effects of BiOBr nanosheets carrying surfactant cetyltrimethylammonium bromide. Journal of Biomedical Research, 2018, 32, 380-388.	1.6	5
49	Ring synthetic chromosome V SCRaMbLE. Nature Communications, 2018, 9, 3783.	12.8	46
50	Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 2018, 9, 1933.	12.8	118
51	In vitro DNA SCRaMbLE. Nature Communications, 2018, 9, 1935.	12.8	81
52	Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 2018, 9, 1934.	12.8	82
53	Ethylenediamine pretreatment of corn stover facilitates high gravity fermentation with low enzyme loading. Bioresource Technology, 2018, 267, 227-234.	9.6	26
54	Engineering global transcription to tune lipophilic properties in Yarrowia lipolytica. Biotechnology for Biofuels, 2018, 11, 115.	6.2	12

#	Article	IF	CITATIONS
55	Stepwise pretreatment of aqueous ammonia and ethylenediamine improve enzymatic hydrolysis of corn stover. Industrial Crops and Products, 2018, 124, 201-208.	5.2	21
56	Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation. Energy, 2018, 157, 877-885.	8.8	26
57	Synthetic <i>Saccharomyces cerevisiae</i> â€ <i>Shewanella oneidensis</i> consortium enables glucoseâ€fed highâ€performance microbial fuel cell. AICHE Journal, 2017, 63, 1830-1838.	3.6	46
58	Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 2017, 355, .	12.6	169
59	"Perfect―designer chromosome V and behavior of a ring derivative. Science, 2017, 355, .	12.6	185
60	Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355, .	12.6	173
61	Deep functional analysis of synll, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355, .	12.6	163
62	A three-species microbial consortium for power generation. Energy and Environmental Science, 2017, 10, 1600-1609.	30.8	90
63	Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production. Bioresource Technology, 2017, 224, 342-348.	9.6	18
64	Hydrolysis of Lignocellulosic Biomass to Sugars. Biofuels and Biorefineries, 2017, , 3-41.	0.5	5
65	Production of naringenin from Dâ€xylose with coâ€culture of <i>E. coli</i> and <i>S. cerevisiae</i> . Engineering in Life Sciences, 2017, 17, 1021-1029.	3.6	51
66	Optimization of ethylenediamine pretreatment and enzymatic hydrolysis to produce fermentable sugars from corn stover. Industrial Crops and Products, 2017, 102, 51-57.	5.2	32
67	Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11, 117-125.	4.4	19
68	Design and chemical synthesis of eukaryotic chromosomes. Chemical Society Reviews, 2017, 46, 7191-7207.	38.1	21
69	Orthogonal Ribosome Biofirewall. ACS Synthetic Biology, 2017, 6, 2108-2117.	3.8	11
70	Enhancement of Simultaneous Xylose and Glucose Utilization by Regulating ZWF1 and PGI1 in Saccharomyces Cerevisiae. Transactions of Tianjin University, 2017, 23, 201-210.	6.4	2
71	Reducing sugar loss in enzymatic hydrolysis of ethylenediamine pretreated corn stover. Bioresource Technology, 2017, 224, 405-410.	9.6	15
72	Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2017, 10, 189.	6.2	53

#	Article	IF	CITATIONS
73	Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnology for Biofuels, 2017, 10, 228.	6.2	58
74	Hybridization Improves Inhibitor Tolerance of Xylose-fermenting Saccharomyces cerevisiae. BioResources, 2017, 12, .	1.0	4
75	Design and synthesis of yeast chromosomes. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2017, 39, 865-876.	0.2	2
76	Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. Frontiers in Microbiology, 2016, 7, 241.	3.5	25
77	Multigene Pathway Engineering with Regulatory Linkers (M-PERL). ACS Synthetic Biology, 2016, 5, 1535-1545.	3.8	11
78	In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production. Bioresource Technology, 2016, 218, 380-387.	9.6	30
79	A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microbial Cell Factories, 2016, 15, 151.	4.0	64
80	Engineering Escherichia coli for production of 4-hydroxymandelic acid using glucose–xylose mixture. Microbial Cell Factories, 2016, 15, 90.	4.0	24
81	Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels, 2016, 9, 70.	6.2	170
82	Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose. Bioresource Technology, 2016, 209, 172-179.	9.6	22
83	Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure. Biotechnology for Biofuels, 2015, 8, 174.	6.2	56
84	Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnology for Biofuels, 2015, 8, 142.	6.2	46
85	Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Frontiers in Microbiology, 2015, 6, 1165.	3.5	31
86	Deletion of d-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnology Letters, 2015, 37, 1031-1036.	2.2	22
87	Physical and Chemical Characterizations of Corn Stover from Leading Pretreatment Methods and Effects on Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 140-146.	6.7	61
88	Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnology Advances, 2015, 33, 1412-1419.	11.7	12
89	Engineered biosynthesis of natural products in heterologous hosts. Chemical Society Reviews, 2015, 44, 5265-5290.	38.1	156
90	Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: Overcoming the inhibitors by non-tolerant yeast. Bioresource Technology, 2015, 198, 39-46.	9.6	49

#	Article	IF	CITATIONS
91	Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnology for Biofuels, 2014, 7, 167.	6.2	115
92	Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Applied Microbiology and Biotechnology, 2014, 98, 2207-2221.	3.6	24
93	Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005. Bioresource Technology, 2014, 169, 9-18.	9.6	49
94	Comparative metabolic profiling revealed limitations in xyloseâ€fermenting yeast during coâ€fermentation of glucose and xylose in the presence of inhibitors. Biotechnology and Bioengineering, 2014, 111, 152-164.	3.3	58
95	Metabolomic Analysis Reveals Key Metabolites Related to the Rapid Adaptation of <i>Saccharomyce cerevisiae</i> to Multiple Inhibitors of Furfural, Acetic Acid, and Phenol. OMICS A Journal of Integrative Biology, 2013, 17, 150-159.	2.0	34
96	High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresource Technology, 2013, 146, 504-511.	9.6	67
97	Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresource Technology, 2013, 132, 5-15.	9.6	78
98	Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 2013, 44, 176-184.	5.2	133
99	Combined Severity during Pretreatment Chemical and Temperature on the Saccharification of Wheat Straw using Acids and Alkalis of Differing Strength. BioResources, 2013, 9, .	1.0	10
100	Optimization of CDT-1 and XYL1 Expression for Balanced Co-Production of Ethanol and Xylitol from Cellobiose and Xylose by Engineered Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e68317.	2.5	34
101	Integrated Phospholipidomics and Transcriptomics Analysis of <i>Saccharomyces cerevisiae</i> with Enhanced Tolerance to a Mixture of Acetic Acid, Furfural, and Phenol. OMICS A Journal of Integrative Biology, 2012, 16, 374-386.	2.0	39
102	Comparative Metabolomic Study of Penicillium chrysogenum During Pilot and Industrial Penicillin Fermentations. Applied Biochemistry and Biotechnology, 2012, 168, 1223-1238.	2.9	14
103	Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Frontiers in Microbiology, 2012, 3, 355.	3.5	27
104	Comparative lipidomic analysis of Cephalosporium acremonium insights into industrial and pilot fermentations. Biotechnology and Bioprocess Engineering, 2012, 17, 259-269.	2.6	2
105	Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresource Technology, 2012, 112, 319-326.	9.6	145
106	Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 86, 1915-1924.	3.6	109
107	Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 43-55.	3.0	27
108	Biofuels in China: past, present and future. Biofuels, Bioproducts and Biorefining, 2010, 4, 326-342.	3.7	39

#	Article	IF	CITATIONS
109	Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. Journal of Biotechnology, 2010, 148, 194-203.	3.8	44
110	Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresource Technology, 2010, 101, 1285-1292.	9.6	216
111	Metabolome Analysis of Differential Responses of Diploid and Haploid Yeast to Ethanol Stress. OMICS A Journal of Integrative Biology, 2010, 14, 553-561.	2.0	34