Takuji Hirose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9154427/publications.pdf

Version: 2024-02-01

77	1,480	20	35
papers	citations	h-index	g-index
89	89	89	1788
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO ₂ into cyclic carbonates under mild conditions. Green Chemistry, 2016, 18, 1229-1233.	9.0	175
2	pHâ€Dependent Catalytic Activity and Chemoselectivity in Transfer Hydrogenation Catalyzed by Iridium Complex with 4,4′â€Dihydroxyâ€2,2′â€bipyridine. Chemistry - A European Journal, 2008, 14, 11076-11081.	3.3	133
3	DBU/benzyl bromide: an efficient catalytic system for the chemical fixation of CO ₂ into cyclic carbonates under metal- and solvent-free conditions. Catalysis Science and Technology, 2016, 6, 3872-3877.	4.1	57
4	Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazolineâ€Based, Protonâ€Responsive Ligand. ChemSusChem, 2017, 10, 1071-1075.	6.8	57
5	Synthesis of Chiral 1,3â€Diamines Derived from ⟨i⟩cis⟨ i⟩â€2â€Benzamidocyclohexanecarboxylic Acid and Their Application in the Cuâ€Catalyzed Enantioselective Henry Reaction. Chemistry - A European Journal, 2011, 17, 13584-13592.	3.3	54
6	Photocatalytic CO ₂ Reduction by Trigonal-Bipyramidal Cobalt(II) Polypyridyl Complexes: The Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO ₂ , CO, or Proton. Inorganic Chemistry, 2018, 57, 5486-5498.	4.0	53
7	Self-assembled proline-amino thioureas as efficient organocatalysts for the asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron: Asymmetry, 2010, 21, 2925-2933.	1.8	49
8	A metal-organic molecular box obtained from self-assembling around uranyl ions. Journal of the Chemical Society Dalton Transactions, 1999, , 1047-1048.	1.1	48
9	Resolution of \hat{l}^2 -aminoalcohols and 1,2-diamines using fractional crystallization of diastereomeric salts of dehydroabietic acid. Tetrahedron: Asymmetry, 2003, 14, 3297-3300.	1.8	45
10	Novel chiral ammonium ionic liquids as efficient organocatalysts for asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron, 2010, 66, 4970-4976.	1.9	42
11	Synthesis of cyclic carbonates from CO ₂ and epoxides catalyzed by low loadings of benzyl bromide/DMF at ambient pressure. Chemical Communications, 2014, 50, 14813-14816.	4.1	39
12	Switching of Enantioselectivity in the Catalytic Addition of Diethylzinc to Aldehydes by Regioisomeric Chiral 1,3-Amino Sulfonamide Ligands. Journal of Organic Chemistry, 2011, 76, 5413-5428.	3.2	38
13	Synthesis of novel chiral tridentate aminophenol ligands for enantioselective addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry, 2008, 19, 1670-1675.	1.8	34
14	Spontaneous Formation of Gating Lipid Domain in Uniform-Size Peptide Vesicles for Controlled Release. Journal of the American Chemical Society, 2018, 140, 17956-17961.	13.7	29
15	1H NMR study of chiral recognition of amines by chiral Kemp's acid diamide. Tetrahedron: Asymmetry, 2001, 12, 375-380.	1.8	24
16	Catalytic enantioselective arylation of aryl aldehydes by chiral aminophenol ligands. Tetrahedron: Asymmetry, 2009, 20, 415-419.	1.8	23
17	Synthesis of novel chiral 1,3-aminophenols and application for the enantioselective addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry, 2007, 18, 1257-1263.	1.8	22
18	Chirality control in the enantioselective arylation of aromatic aldehydes catalyzed by cis-(1R,2S)-2-benzamidocyclohexanecarboxylic acid derived 1,3-aminoalcohols. Tetrahedron: Asymmetry, 2010, 21, 75-80.	1.8	22

#	Article	IF	CITATIONS
19	Title is missing!. Journal of Inorganic and Organometallic Polymers, 1999, 9, 199-219.	1.5	21
20	Solvent control of optical resolution of 2-amino-1-phenylethanol using dehydroabietic acid. Organic and Biomolecular Chemistry, 2008, 6, 458-463.	2.8	21
21	Economical synthesis of cyclic carbonates from carbon dioxide and halohydrins using K ₂ CO ₃ . RSC Advances, 2016, 6, 69040-69044.	3.6	21
22	Construction of Hydrogenâ€Bonded Ternary Organic Crystals Derived from <scp>L</scp> â€Tartaric Acid and Their Application to Enantioseparation of Secondary Alcohols. Chemistry - A European Journal, 2011, 17, 11527-11534.	3.3	20
23	Solvent-Induced Reversed Stereoselectivity in Reciprocal Resolutions of Mandelic Acid and <i>erythro</i> -2-Amino-1,2-diphenylethanol. Journal of Organic Chemistry, 2013, 78, 9309-9316.	3.2	20
24	Electro-oxidation of methanol on platinum-organic metal complex mixed catalysts in acidic media. Chemical Communications, 2001, , 2492-2493.	4.1	19
25	Enantioselective addition of phenylacetylene to aldehydes catalyzed by 1,3-aminophenol ligand. Tetrahedron: Asymmetry, 2007, 18, 2668-2673.	1.8	18
26	Chirality Switching in Optical Resolution of Mandelic Acid in C1–C4 Alcohols: Elucidation of Solvent Effects Based on X-ray Crystal Structures of Diastereomeric Salts. Crystal Growth and Design, 2014, 14, 3549-3556.	3.0	18
27	Effect of alkoxy terminal chain length on mesomorphism of 1,6-disubstituted pyrene-based hexacatenar liquid crystals: columnar phase control. Tetrahedron, 2014, 70, 5100-5108.	1.9	16
28	Resolution of sclareolide as a key intermediate for the synthesis of Ambrox $\hat{A}^{@}$. Tetrahedron: Asymmetry, 1998, 9, 3819-3823.	1.8	15
29	Synthesis of Optically Active 2-Methylchroman Derivatives and Application to Chiral Dopants for Nematic Liquid Crystals. Bulletin of the Chemical Society of Japan, 2000, 73, 259-265.	3.2	15
30	Helical Twisting Power of New Chiral Dopants Derived from 2–Phenylpropanoic Acid for Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2000, 346, 35-40.	0.3	15
31	Fluorogenic Enhancement of an in Vitro-Selected Peptide Ligand by Replacement of a Fluorescent Group. Analytical Chemistry, 2016, 88, 7991-7997.	6.5	15
32	Helical Twisting Power of New Chiral Dopants Having a Trifluoromethyl Group at the Chiral Center for Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2003, 398, 189-193.	0.9	14
33	Organocatalyst system for disubstituted carbonates from cycloaddition between CO2 and internal epoxides. Journal of CO2 Utilization, 2018, 24, 261-265.	6.8	14
34	Solvent-induced dual chirality switching in the optical resolution of tropic acid via diastereomeric salt formation with (1R,2S)-2-amino-1,2-diphenylethanol. Tetrahedron, 2014, 70, 7923-7928.	1.9	13
35	New Kemp's Diacid Derivatives Give Efficient Transport and Modifiable Selectivity for Alkaline Earth and Transition Metal Ions. Bulletin of the Chemical Society of Japan, 1997, 70, 1895-1903.	3.2	11
36	Synthesis and Phase Structures of Novel Ï€â€Acceptor Discotic Liquid Crystalline Compounds Having a Pyrenedione Core. European Journal of Organic Chemistry, 2008, 2008, 4120-4125.	2.4	11

#	Article	IF	CITATIONS
37	Resolution of \hat{l} ±-methylbenzylamine via diastereomeric salt formation using the naturally based reagent N-tosyl-(S)-phenylalanine together with a solvent switch technique. Tetrahedron: Asymmetry, 2008, 19, 1641-1646.	1.8	11
38	Direct enantioseparation of diarylmethylamines with an ortho-hydroxy group via diastereomeric salt formation and their application to the enantioselective addition reaction of diethylzinc. Tetrahedron, 2016, 72, 1387-1394.	1.9	11
39	Optical Rotation Study on Solvent Dependence of Diastereomeric Salt Discrimination Properties. Bulletin of the Chemical Society of Japan, 2006, 79, 1084-1090.	3.2	10
40	Synthesis and Hole Transport Properties of Highly Soluble Pyrene-Based Discotic Liquid Crystals with Trialkylsilylethynyl Groups. Molecular Crystals and Liquid Crystals, 2011, 534, 81-92.	0.9	10
41	Solventâ€induced chirality control in the enantioseparation of 1â€phenylethylamine via diastereomeric salt formation. Chirality, 2011, 23, 326-332.	2.6	10
42	Enantioseparation of 1-arylethanols via a supramolecular chiral host consisting of N-(2-naphthoyl)-l-aspartic acid and an achiral diamine. Organic and Biomolecular Chemistry, 2012, 10, 1877.	2.8	10
43	Trialkylsilylethynyl-substituted triphenylenes and hexabenzocoronenes: highly soluble liquid crystalline materials and their hole transport abilities. Tetrahedron, 2015, 71, 4714-4721.	1.9	10
44	Copperâ€Catalyzed Coupling Reactions of Aryl Halides and Phenols by 4,4'â€Dimethoxyâ€2,2'â€bipyridin 4,7â€Dimethoxyâ€1,10â€phenanthroline. ChemistrySelect, 2018, 3, 12620-12624.	e and 1.5	10
45	Poly(4â€vinylphenol)/tetraâ€∢i>nà€butylammonium iodide: Efficient organocatalytic system for synthesis of cyclic carbonates from CO ₂ and epoxides. Journal of Applied Polymer Science, 2017, 134, 45189.	2.6	9
46	Solvent-induced chirality switching in the enantioseparation of regioisomeric hydroxyphenylpropionic acids via diastereomeric salt formation with (1 R $_{\star}$ 2 S) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{\star}$ 5.	5 0.8 77 Td	() •2-amino-2
47	Chirality Control by Substituents in the Asymmetric Addition of Et ₂ Zn to Aromatic Aldehydes Catalyzed by <i> cis</i> isê€(1 <i>R</i> ,2 <i>S</i>)â€2â€Benzamidocyclohexanecarboxylic Acid Derived 1,3â€Aminoalcohols. Chinese Journal of Chemistry, 2010, 28, 61-68.	4.9	8
48	Formation of Ternary Inclusion Crystal and Enantioseparation of Alkyl Aryl Sulfoxides by the Salt of Urea-Modified <scp>I</scp> -Phenylalanine and an Achiral Amine. Crystal Growth and Design, 2016, 16, 5206-5213.	3.0	8
49	Synthesis and Properties of Ferroelectric Liquid Crystals Derived from 5-Alkyl-Î'-Valerolactones. Molecular Crystals and Liquid Crystals, 2000, 346, 51-61.	0.3	7
50	Structure and Chiral Recognition Ability ofendo-3-Benzamidonorborn-5-ene-2-carboxylic Acid. Bulletin of the Chemical Society of Japan, 2005, 78, 880-885.	3.2	7
51	Induction and Control of Columnar Mesophase by Charge Transfer Interaction and Side Chain Structures of Tetrasubstituted Pyrenes. Molecular Crystals and Liquid Crystals, 2006, 451, 65-74.	0.9	7
52	Synthesis of new chiral dopants derived from naproxen for nematic liquid crystals. Liquid Crystals, 2008, 35, 681-687.	2.2	7
53	Liquid-Crystalline Behavior and Structure of Charge-Transfer Complexes of Pyrene Derivatives with Four Linear Alkanoyloxy Substituents. Molecular Crystals and Liquid Crystals, 2010, 524, 68-101.	0.9	7
54	Direct enantioseparation of 1-(2-hydroxyphenyl) ethylamines via diastereomeric salt formation: chiral recognition mechanism based on the crystal structure. RSC Advances, 2014, 4, 25609.	3.6	7

#	Article	IF	CITATIONS
55	Enantioseparation of Sulfoxides and Nitriles by Inclusion Crystallization with Chiral Organic Salts Based on <scp>l</scp> â€Phenylalanine. European Journal of Organic Chemistry, 2018, 2018, 1726-1729.	2.4	7
56	Chromogenic reagent for mercury based on Kemp's acid imide. Chemical Communications, 1997, , 297-298.	4.1	6
57	Synthesis and Evaluation of Superior Calcium and Mercury Transport by Simple Monocarboxylic Acids of Kemp's Triacid. Bulletin of the Chemical Society of Japan, 1999, 72, 865-873.	3.2	6
58	Light-driven molecular switching of atropisomeric polymers containing azo-binaphthyl groups in their side chains. Polymer Journal, 2018, 50, 455-465.	2.7	6
59	Solvent-Induced Chirality Switching in the Enantioseparation of Halogen-Substituted Mandelic Acids: Structural Effects on Molecular Packing. Crystal Growth and Design, 2019, 19, 7153-7159.	3.0	6
60	A benign initiating system for cationic polymerization of isobutyl vinyl ether: Silver salt/aryl(alkyl) halide/lewis base. Journal of Polymer Science Part A, 2015, 53, 2050-2058.	2.3	5
61	Synthesis and evaluation of chiral \hat{l}^2 -amino acid-based low-molecular-weight organogelators possessing a methyl/trifluoromethyl side chain. New Journal of Chemistry, 2019, 43, 2882-2887.	2.8	4
62	Polymeric fibers and microporous films by photoâ€crosslinking of triphenyleneâ€derived liquid crystals. Journal of Polymer Science Part A, 2019, 57, 605-612.	2.3	4
63	Efficient Pyrazole Moietyâ€Containing Ligands for Cuâ€Catalyzed <i>O</i> â€Arylation of Phenols. ChemistrySelect, 2020, 5, 4152-4159.	1.5	4
64	Cationic polymerization of vinyl ethers and <i>p</i> â€methoxystyrene by a benign initiating system: Silver salt/arylmethyl halide/dialkyl sulfide. Journal of Polymer Science Part A, 2016, 54, 861-870.	2.3	3
65	A systematic study on ternary inclusion crystals consisting of dianilines and three positional isomers of ditoluoyl- <scp>l</scp> -tartaric acid. CrystEngComm, 2016, 18, 123-129.	2.6	3
66	Development of Liquid Crystal Materials Having an Anthraquinone and Bithiophene Moieties, and Their Electrochromic Properties. Electrochemistry, 2017, 85, 768-774.	1.4	3
67	Tubular Network Formation by Mixing Amphiphilic Polypeptides with Differing Hydrophilic Blocks. Biomacromolecules, 2019, 20, 3908-3914.	5.4	3
68	Direct enantioseparation of axially chiral 1,1′-biaryl-2,2′-diols using amidine-based resolving agents. RSC Advances, 2021, 11, 18162-18170.	3.6	3
69	Enantiomer Separation of Nitriles and Epoxides by Crystallization with Chiral Organic Salts: Chirality Switching Modulated by Achiral Acids. Crystal Growth and Design, 2021, 21, 6552-6557.	3.0	3
70	"Solvent-induced chirality switching―in the enantioseparation of chlorine-substituted tropic acids via diastereomeric salt formation by (1R,2S)-(â°')-2-amino-1,2-diphenylethanol (ADPE). Tetrahedron, 2022, 108, 132653.	1.9	3
71	Noncovalent Functionalization of Single-Walled Carbon Nanotubes with a Photocleavable Polythiophene Derivative. Nanomaterials, 2022, 12, 52.	4.1	3
72	Chiral 1,3-aminosquaramides derived from cis-2-benzamidocyclohexanecarboxylic acid as organocatalysts for asymmetric Michael addition reactions. Tetrahedron, 2022, 112, 132750.	1.9	2

Takuji Hirose

#	Article	lF	CITATIONS
73	Crystal Structure of 3,4-Dihydro-2H-1,5-benzodioxepine-7,8-dicarboxylic Acid. Analytical Sciences: X-ray Structure Analysis Online, 2005, 21, X81-X82.	0.1	1
74	(+)-N-[(R)-1-(2-Hydroxy-5-methylphenyl)propyl]-N-[(R)-2-methyl-1-phenylpropyl]ammonium chloride. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2622-o2624.	0.2	1
75	Phosphorogenic and spontaneous formation of tris(bipyridine)ruthenium in peptide scaffolds. Journal of Peptide Science, 2019, 25, e3158.	1.4	1
76	Crystal Structure of (S)-Piperazine-2-carboxylic acid t-butylamide/N-Tosyl-(S)-phenylalanine 1:2 Salt. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X29-X30.	0.1	0
77	Crystal Structures of (S)- and (R)-1-Amino-2-propanol/Dehydroabietic Acid Salts. Analytical Sciences: X-ray Structure Analysis Online, 2008, 24, X9-X10.	0.1	0