Jin-Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9154401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetically actuated microrobots as a platform for stem cell transplantation. Science Robotics, 2019, 4, .	17.6	247
2	A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network. Soft Robotics, 2019, 6, 54-68.	8.0	183
3	Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy. Advanced Healthcare Materials, 2019, 8, e1900213.	7.6	116
4	A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions. Intelligent Service Robotics, 2020, 13, 1-14.	2.6	95
5	3D Fabrication of Fully Iron Magnetic Microrobots. Small, 2019, 15, e1805006.	10.0	79
6	A Capsuleâ€Type Microrobot with Pickâ€andâ€Drop Motion for Targeted Drug and Cell Delivery. Advanced Healthcare Materials, 2018, 7, e1700985.	7.6	77
7	A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks. Science Advances, 2020, 6, .	10.3	64
8	Fabrication and Characterization of a Magnetic Drilling Actuator for Navigation in a Three-dimensional Phantom Vascular Network. Scientific Reports, 2018, 8, 3691.	3.3	60
9	Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Advanced Healthcare Materials, 2021, 10, e2001096.	7.6	59
10	Recent Progress in Magnetically Actuated Microrobots for Targeted Delivery of Therapeutic Agents. Advanced Healthcare Materials, 2021, 10, e2001596.	7.6	56
11	A Needleâ€₹ype Microrobot for Targeted Drug Delivery by Affixing to a Microtissue. Advanced Healthcare Materials, 2020, 9, e1901697.	7.6	54
12	A Magnetically Powered Stem Cellâ€Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Advanced Healthcare Materials, 2021, 10, e2100801.	7.6	32
13	Steering Algorithm for a Flexible Microrobot to Enhance Guidewire Control in a Coronary Angioplasty Application. Micromachines, 2018, 9, 617.	2.9	30
14	Magnetically Actuated SiCNâ€Based Ceramic Microrobot for Guided Cell Delivery. Advanced Healthcare Materials, 2019, 8, e1900739.	7.6	29
15	A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability. Small, 2022, 18, .	10.0	29
16	A simple and rapid fabrication method for biodegradable drug-encapsulating microrobots using laser micromachining, and characterization thereof. Sensors and Actuators B: Chemical, 2018, 266, 276-287.	7.8	25
17	Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters, 2018, 6, .	3.7	25
18	A 3D Microscaffold Cochlear Electrode Array for Steroid Elution. Advanced Healthcare Materials, 2019, 8, e1900379.	7.6	23

JIN-YOUNG KIM

#	Article	IF	CITATIONS
19	An Electromagnetically Controllable Microrobotic Interventional System for Targeted, Realâ€Time Cardiovascular Intervention. Advanced Healthcare Materials, 2022, 11, e2102529.	7.6	20
20	Closed‣oop Temperatureâ€Controlled Magnetic Hyperthermia Therapy with Magnetic Guidance of Superparamagnetic Ironâ€Oxide Nanoparticles. Advanced Therapeutics, 2022, 5, .	3.2	9
21	Microrobotics: 3D Fabrication of Fully Iron Magnetic Microrobots (Small 16/2019). Small, 2019, 15, 1970086.	10.0	2
22	Biocompatible Microrobots: Magnetically Actuated SiCNâ€Based Ceramic Microrobot for Guided Cell Delivery (Adv. Healthcare Mater. 21/2019). Advanced Healthcare Materials, 2019, 8, 1970085.	7.6	2