
Mark C Hersam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9153945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 1102-1120.	14.6	2,307
2	Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology, 2006, 1, 60-65.	31.5	2,075
3	Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 2015, 350, 1513-1516.	12.6	2,047
4	Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Letters, 2014, 14, 6964-6970.	9.1	1,294
5	Mixed-dimensional van der Waals heterostructures. Nature Materials, 2017, 16, 170-181.	27.5	1,220
6	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	38.1	1,105
7	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
8	Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotechnology, 2008, 3, 387-394.	31.5	861
9	Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554, 500-504.	27.8	705
10	Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation. Nano Letters, 2009, 9, 4031-4036.	9.1	701
11	Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chemistry, 2016, 8, 597-602.	13.6	687
12	Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry, 2017, 1, .	30.2	671
13	Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano, 2015, 9, 3596-3604.	14.6	655
14	Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications. ACS Nano, 2015, 9, 4636-4648.	14.6	609
15	Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6, 8632.	12.8	598
16	Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes. Physical Review Letters, 2001, 86, 3128-3131.	7.8	574
17	Inkjet Printing of High Conductivity, Flexible Graphene Patterns. Journal of Physical Chemistry Letters, 2013, 4, 1347-1351.	4.6	573
18	Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nature Nanotechnology, 2015, 10, 403-406.	31.5	564

#	Article	IF	CITATIONS
19	Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO ₂ for Improved Solar Fuel Production. Nano Letters, 2011, 11, 2865-2870.	9.1	529
20	Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients. Nano Letters, 2005, 5, 713-718.	9.1	496
21	Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environmental Science & Technology, 2013, 47, 6288-6296.	10.0	492
22	Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung. Nano Letters, 2011, 11, 5201-5207.	9.1	480
23	Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays. ACS Nano, 2008, 2, 2445-2452.	14.6	472
24	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528.	31.5	464
25	Highâ€Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics. Advanced Materials, 2015, 27, 109-115.	21.0	430
26	Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nature Chemistry, 2009, 1, 206-211.	13.6	409
27	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials, 2016, 3, 042001.	4.4	408
28	Functional inks and printing of two-dimensional materials. Chemical Society Reviews, 2018, 47, 3265-3300.	38.1	401
29	Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 2018, 13, 444-450.	31.5	392
30	Gate-tunable carbon nanotube–MoS ₂ heterojunction p-n diode. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18076-18080.	7.1	373
31	Room Temperature Negative Differential Resistance through Individual Organic Molecules on Silicon Surfaces. Nano Letters, 2004, 4, 55-59.	9.1	369
32	Printed, Sub-3V Digital Circuits on Plastic from Aqueous Carbon Nanotube Inks. ACS Nano, 2010, 4, 4388-4395.	14.6	362
33	Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Applied Physics Letters, 2013, 102, .	3.3	359
34	Polyelemental nanoparticle libraries. Science, 2016, 352, 1565-1569.	12.6	332
35	Colored Semitransparent Conductive Coatings Consisting of Monodisperse Metallic Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 1417-1422.	9.1	328
36	Slip-Stacked Perylenediimides as an Alternative Strategy for High Efficiency Nonfullerene Acceptors in Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 16345-16356.	13.7	320

#	Article	IF	CITATIONS
37	2D materials for quantum information science. Nature Reviews Materials, 2019, 4, 669-684.	48.7	305
38	Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nature Chemistry, 2012, 4, 305-309.	13.6	300
39	Gravure Printing of Graphene for Largeâ€area Flexible Electronics. Advanced Materials, 2014, 26, 4533-4538.	21.0	298
40	Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS ₂ . Nano Letters, 2016, 16, 497-503.	9.1	295
41	Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS ₂ . ACS Nano, 2014, 8, 10551-10558.	14.6	281
42	Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nature Communications, 2014, 5, 2983.	12.8	269
43	Borophene Synthesis on Au(111). ACS Nano, 2019, 13, 3816-3822.	14.6	261
44	Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics. Advanced Materials, 2015, 27, 6683-6688.	21.0	258
45	Nanotechnology research directions for societal needs in 2020: summary of international study. Journal of Nanoparticle Research, 2011, 13, 897-919.	1.9	240
46	Highly Concentrated Graphene Solutions via Polymer Enhanced Solvent Exfoliation and Iterative Solvent Exchange. Journal of the American Chemical Society, 2010, 132, 17661-17663.	13.7	239
47	In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy. Advanced Energy Materials, 2012, 2, 120-128.	19.5	237
48	Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. ACS Nano, 2016, 10, 3900-3917.	14.6	232
49	Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter. Environmental Science & Technology, 2015, 49, 10886-10893.	10.0	230
50	Low-Frequency Electronic Noise in Single-Layer MoS ₂ Transistors. Nano Letters, 2013, 13, 4351-4355.	9.1	221
51	Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus. Advanced Materials, 2015, 27, 8017-8022.	21.0	221
52	Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano, 2018, 12, 1390-1402.	14.6	221
53	Electronic Transport in Two-Dimensional Materials. Annual Review of Physical Chemistry, 2018, 69, 299-325.	10.8	217
54	Silicon-based molecular nanotechnology. Nanotechnology, 2000, 11, 70-76.	2.6	214

#	Article	IF	CITATIONS
55	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. Journal of the American Chemical Society, 2020, 142, 14532-14547.	13.7	214
56	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	14.6	211
57	Atomic Covalent Functionalization of Graphene. Accounts of Chemical Research, 2013, 46, 77-86.	15.6	209
58	In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus. Journal of Physical Chemistry Letters, 2015, 6, 773-778.	4.6	209
59	Aerosol Jet Printed, Low Voltage, Electrolyte Gated Carbon Nanotube Ring Oscillators with Sub-5 μs Stage Delays. Nano Letters, 2013, 13, 954-960.	9.1	207
60	Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11688-11693.	7.1	206
61	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
62	Emerging Methods for Producing Monodisperse Graphene Dispersions. Journal of Physical Chemistry Letters, 2010, 1, 544-549.	4.6	200
63	Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene–MoS ₂ van der Waals Heterojunction. Nano Letters, 2017, 17, 164-169.	9.1	195
64	Processing and properties of highly enriched double-wall carbon nanotubes. Nature Nanotechnology, 2009, 4, 64-70.	31.5	192
65	Elucidating the Photoresponse of Ultrathin MoS ₂ Field-Effect Transistors by Scanning Photocurrent Microscopy. Journal of Physical Chemistry Letters, 2013, 4, 2508-2513.	4.6	190
66	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	13.7	190
67	Solution-processed carbon nanotube thin-film complementary static random access memory. Nature Nanotechnology, 2015, 10, 944-948.	31.5	184
68	Biocompatible Nanoscale Dispersion of Single-Walled Carbon Nanotubes Minimizes in vivo Pulmonary Toxicity. Nano Letters, 2010, 10, 1664-1670.	9.1	183
69	Rotationally Commensurate Growth of MoS ₂ on Epitaxial Graphene. ACS Nano, 2016, 10, 1067-1075.	14.6	176
70	Effect of Dimensionality on the Photocatalytic Behavior of Carbon–Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces. Journal of Physical Chemistry Letters, 2012, 3, 1760-1765.	4.6	174
71	Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. ACS Nano, 2016, 10, 10966-10980.	14.6	172
72	Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Accounts of Chemical Research, 2017, 50, 943-951.	15.6	172

#	Article	IF	CITATIONS
73	Nearly Singleâ€Chirality Singleâ€Walled Carbon Nanotubes Produced via Orthogonal Iterative Density Gradient Ultracentrifugation. Advanced Materials, 2011, 23, 2185-2190.	21.0	168
74	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. Chemical Science, 2016, 7, 3543-3555.	7.4	168
75	Seeding Atomic Layer Deposition of High- <i>k</i> Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers. ACS Nano, 2011, 5, 5223-5232.	14.6	167
76	Scalable, Selfâ€Aligned Printing of Flexible Graphene Micro‧upercapacitors. Advanced Energy Materials, 2017, 7, 1700285.	19.5	167
77	High-Concentration Aqueous Dispersions of Graphene Using Nonionic, Biocompatible Block Copolymers. Journal of Physical Chemistry Letters, 2011, 2, 1004-1008.	4.6	161
78	Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters, 2012, 12, 3050-3061.	9.1	159
79	Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Research, 2009, 2, 69-77.	10.4	158
80	Controlled Growth of Platinum Nanoparticles on Strontium Titanate Nanocubes by Atomic Layer Deposition. Small, 2009, 5, 750-757.	10.0	158
81	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nature Materials, 2021, 20, 1142-1148.	27.5	158
82	Integrated Ultramicroelectrodeâ^'Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy. Analytical Chemistry, 2010, 82, 1270-1276.	6.5	157
83	Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2011, 23, 2218-2226.	6.7	157
84	Direct oriented growth of armchair graphene nanoribbons on germanium. Nature Communications, 2015, 6, 8006.	12.8	157
85	Substrate-Induced Nanoscale Undulations of Borophene on Silver. Nano Letters, 2016, 16, 6622-6627.	9.1	155
86	Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. Journal of Physical Chemistry Letters, 2011, 2, 3006-3012.	4.6	154
87	CdO as the Archetypical Transparent Conducting Oxide. Systematics of Dopant Ionic Radius and Electronic Structure Effects on Charge Transport and Band Structure. Journal of the American Chemical Society, 2005, 127, 8796-8804.	13.7	150
88	Scanning Tunneling Microscopy, Spectroscopy, and Nanolithography of Epitaxial Graphene Chemically Modified with Aryl Moieties. Journal of the American Chemical Society, 2010, 132, 15399-15403.	13.7	144
89	Fundamental Performance Limits of Carbon Nanotube Thin-Film Transistors Achieved Using Hybrid Molecular Dielectrics. ACS Nano, 2012, 6, 7480-7488.	14.6	142
90	Investigation of Band-Offsets at Monolayer–Multilayer MoS ₂ Junctions by Scanning Photocurrent Microscopy. Nano Letters, 2015, 15, 2278-2284.	9.1	141

#	Article	IF	CITATIONS
91	Encapsulation of Carbon Nanotubes by Self-Assembling Peptide Amphiphiles. Langmuir, 2005, 21, 4705-4709.	3.5	139
92	Highâ€Performance Solidâ€State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Advanced Energy Materials, 2016, 6, 1600909.	19.5	139
93	Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 2022, 21, 35-40.	27.5	137
94	Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose. Chemistry of Materials, 2017, 29, 2332-2340.	6.7	134
95	Interface Characterization and Control of 2D Materials and Heterostructures. Advanced Materials, 2018, 30, e1801586.	21.0	134
96	Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene. Nano Letters, 2012, 12, 1184-1188.	9.1	133
97	High-Speed, Inkjet-Printed Carbon Nanotube/Zinc Tin Oxide Hybrid Complementary Ring Oscillators. Nano Letters, 2014, 14, 3683-3687.	9.1	133
98	Allâ€Printed, Foldable Organic Thinâ€Film Transistors on Glassine Paper. Advanced Materials, 2015, 27, 7058-7064.	21.0	133
99	Emerging Opportunities for Two-Dimensional Materials in Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2026-2034.	17.4	131
100	Intermixing and periodic self-assembly of borophene line defects. Nature Materials, 2018, 17, 783-788.	27.5	129
101	Synthesis of borophane polymorphs through hydrogenation of borophene. Science, 2021, 371, 1143-1148.	12.6	129
102	Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 4961-4982.	47.7	128
103	Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement and Concrete Composites, 2012, 34, 612-617.	10.7	126
104	Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. Nature Communications, 2014, 5, 5478.	12.8	126
105	Recent Advances in Tip-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 3125-3130.	4.6	125
106	Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. Journal of the American Chemical Society, 2021, 143, 6123-6139.	13.7	125
107	Intramolecular Insight into Adsorbate–Substrate Interactions via Low-Temperature, Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2014, 136, 3881-3887.	13.7	123
108	Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics. Journal of Physical Chemistry Letters, 2015, 6, 620-626.	4.6	122

#	Article	IF	CITATIONS
109	Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. Nano Letters, 2016, 16, 2580-2585.	9.1	119
110	Exciton Energy Transfer in Pairs of Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 1363-1367.	9.1	118
111	Hydrodynamic Characterization of Surfactant Encapsulated Carbon Nanotubes Using an Analytical Ultracentrifuge. ACS Nano, 2008, 2, 2291-2300.	14.6	118
112	High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics. ACS Nano, 2017, 11, 7431-7439.	14.6	116
113	In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode. Chemistry of Materials, 2012, 24, 3038-3043.	6.7	114
114	Recent Developments in Carbon Nanotube Sorting and Selective Growth. MRS Bulletin, 2010, 35, 315-321.	3.5	110
115	Polychiral Semiconducting Carbon Nanotube–Fullerene Solar Cells. Nano Letters, 2014, 14, 5308-5314.	9.1	109
116	Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash–cement systems. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1011-1023.	3.1	108
117	Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nature Communications, 2013, 4, .	12.8	107
118	Use of a Pro-Fibrogenic Mechanism-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials. ACS Nano, 2015, 9, 3032-3043.	14.6	107
119	Three-Dimensional Printing of Cytocompatible, Thermally Conductive Hexagonal Boron Nitride Nanocomposites. Nano Letters, 2018, 18, 3488-3493.	9.1	106
120	Pump-Probe Spectroscopy of Exciton Dynamics in (6,5) Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3831-3835.	3.1	105
121	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small, 2015, 11, 5079-5087.	10.0	105
122	Deposition and Release of Graphene Oxide Nanomaterials Using a Quartz Crystal Microbalance. Environmental Science & Technology, 2014, 48, 961-969.	10.0	103
123	Hybrid Gate Dielectric Materials for Unconventional Electronic Circuitry. Accounts of Chemical Research, 2014, 47, 1019-1028.	15.6	103
124	Electronic and Mechanical Properties of Graphene–Germanium Interfaces Grown by Chemical Vapor Deposition. Nano Letters, 2015, 15, 7414-7420.	9.1	103
125	Silicon Growth at the Two-Dimensional Limit on Ag(111). ACS Nano, 2014, 8, 7538-7547.	14.6	101
126	Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets. Nano Letters, 2015, 15, 7029-7036.	9.1	101

#	Article	IF	CITATIONS
127	Fully Inkjet-Printed, Mechanically Flexible MoS ₂ Nanosheet Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 5675-5681.	8.0	100
128	Broad‧pectralâ€Response Nanocarbon Bulkâ€Heterojunction Excitonic Photodetectors. Advanced Materials, 2013, 25, 3433-3437.	21.0	99
129	Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS ₂ –Polymer Heterojunctions. ACS Nano, 2016, 10, 10573-10579.	14.6	99
130	Point Defects and Grain Boundaries in Rotationally Commensurate MoS ₂ on Epitaxial Graphene. Journal of Physical Chemistry C, 2016, 120, 20798-20805.	3.1	99
131	G-quadruplex organic frameworks. Nature Chemistry, 2017, 9, 466-472.	13.6	99
132	Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 26972-26981.	8.0	99
133	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	21.0	98
134	Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling. Nano Letters, 2016, 16, 7121-7127.	9.1	96
135	Conformational Contrast of Surface-Mediated Molecular Switches Yields Ãngstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Nano Letters, 2016, 16, 7774-7778.	9.1	96
136	High-frequency performance of scaled carbon nanotube array field-effect transistors. Applied Physics Letters, 2012, 101, 053123.	3.3	94
137	Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces. Environmental Science & Technology, 2014, 48, 9382-9390.	10.0	92
138	Subnanowatt Carbon Nanotube Complementary Logic Enabled by Threshold Voltage Control. Nano Letters, 2013, 13, 4810-4814.	9.1	91
139	Where Are We Heading in Nanotechnology Environmental Health and Safety and Materials Characterization?. ACS Nano, 2015, 9, 5627-5630.	14.6	91
140	Lowâ€Voltage Complementary Electronics from Ionâ€Gelâ€Gated Vertical Van der Waals Heterostructures. Advanced Materials, 2016, 28, 3742-3748.	21.0	91
141	Borophene-graphene heterostructures. Science Advances, 2019, 5, eaax6444.	10.3	89
142	Probing charge transport at the single-molecule level on silicon by using cryogenic ultra-high vacuum scanning tunneling microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8838-8843.	7.1	87
143	Tip-Enhanced Raman Imaging: An Emergent Tool for Probing Biology at the Nanoscale. ACS Nano, 2013, 7, 885-888.	14.6	87
144	Large-Area, Low-Voltage, Antiambipolar Heterojunctions from Solution-Processed Semiconductors. Nano Letters, 2015, 15, 416-421.	9.1	87

#	Article	IF	CITATIONS
145	Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Nano Letters, 2016, 16, 3898-3904.	9.1	87
146	Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS Applied Materials & Interfaces, 2020, 12, 8592-8603.	8.0	87
147	Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced Raman and Fluorescence Spectroscopy. Nano Letters, 2015, 15, 4114-4120.	9.1	86
148	Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion. Nano Letters, 2017, 17, 2539-2546.	9.1	81
149	Defect-Induced Photoluminescence from Dark Excitonic States in Individual Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 2010-2014.	9.1	80
150	Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. ACS Nano, 2011, 5, 1459-1467.	14.6	80
151	Sorting Single-Walled Carbon Nanotubes by Electronic Type Using Nonionic, Biocompatible Block Copolymers. ACS Nano, 2010, 4, 4725-4732.	14.6	79
152	Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Science Advances, 2017, 3, e1602356.	10.3	79
153	Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry. Journal of Physical Chemistry C, 2015, 119, 21116-21124.	3.1	78
154	Solutionâ€Based Processing of Optoelectronically Active Indium Selenide. Advanced Materials, 2018, 30, e1802990.	21.0	78
155	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377.	14.6	78
156	Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. Energy and Environmental Science, 2020, 13, 4114-4121.	30.8	78
157	Fluorinating Ï€â€Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2000635.	19.5	78
158	Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. ACS Nano, 2016, 10, 9093-9103.	14.6	77
159	Ultracentrifugation of single-walled nanotubes. Materials Today, 2007, 10, 59-60.	14.2	76
160	3D Anisotropic Thermal Conductivity of Exfoliated Rhenium Disulfide. Advanced Materials, 2017, 29, 1700650.	21.0	76
161	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having π-Extended Units with Broad Near-IR Absorption. ACS Energy Letters, 2021, 6, 728-738.	17.4	74
162	Resolving the Inâ€Plane Anisotropic Properties of Black Phosphorus. Small Methods, 2017, 1, 1700143.	8.6	73

Mark C Hersam

#	Article	IF	CITATIONS
163	Dualâ€Gated MoS ₂ Memtransistor Crossbar Array. Advanced Functional Materials, 2020, 30, 2003683.	14.9	73
164	Nanoscale In Situ Characterization of Liâ€ion Battery Electrochemistry Via Scanning Ion Conductance Microscopy. Advanced Materials, 2011, 23, 5613-5617.	21.0	72
165	Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single‣ayer Graphene. Advanced Energy Materials, 2015, 5, 1500646.	19.5	72
166	Layerâ€byâ€Layer Assembled 2D Montmorillonite Dielectrics for Solutionâ€Processed Electronics. Advanced Materials, 2016, 28, 63-68.	21.0	72
167	Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. Applied Physics Letters, 2017, 110, .	3.3	72
168	Atomic-Scale Templates Patterned by Ultrahigh Vacuum Scanning Tunneling Microscopy on Silicon. Annual Review of Physical Chemistry, 2009, 60, 193-216.	10.8	71
169	Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2018, 140, 5948-5954.	13.7	71
170	Chemically Resolved Interface Structure of Epitaxial Graphene on SiC(0001). Physical Review Letters, 2013, 111, 215501.	7.8	70
171	Room temperature nanofabrication of atomically registeredheteromolecular organosilicon nanostructures using multistepfeedback controlled lithography. Applied Physics Letters, 2004, 85, 2619-2621.	3.3	69
172	Ambient-Processable High Capacitance Hafnia-Organic Self-Assembled Nanodielectrics. Journal of the American Chemical Society, 2013, 135, 8926-8939.	13.7	69
173	Printed Indium Gallium Zinc Oxide Transistors. Self-Assembled Nanodielectric Effects on Low-Temperature Combustion Growth and Carrier Mobility. ACS Applied Materials & Interfaces, 2013, 5, 11884-11893.	8.0	69
174	Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. Journal of Physical Chemistry Letters, 2017, 8, 1343-1350.	4.6	68
175	Tuning the Properties of Transparent Oxide Conductors. Dopant Ion Size and Electronic Structure Effects on CdO-Based Transparent Conducting Oxides. Ga- and In-Doped CdO Thin Films Grown by MOCVD. Chemistry of Materials, 2008, 20, 220-230.	6.7	67
176	Quantitatively Enhanced Reliability and Uniformity of High-κ Dielectrics on Graphene Enabled by Self-Assembled Seeding Layers. Nano Letters, 2013, 13, 1162-1167.	9.1	67
177	Covalently Functionalized Double-Walled Carbon Nanotubes Combine High Sensitivity and Selectivity in the Electrical Detection of Small Molecules. Journal of the American Chemical Society, 2013, 135, 2306-2312.	13.7	67
178	Largeâ€Area, Electronically Monodisperse, Aligned Singleâ€Walled Carbon Nanotube Thin Films Fabricated by Evaporationâ€Đriven Selfâ€Assembly. Small, 2013, 9, 45-51.	10.0	67
179	High‣ensitivity Acoustic Molecular Sensors Based on Largeâ€Area, Spray oated 2D Covalent Organic Frameworks. Advanced Materials, 2020, 32, e2004205.	21.0	67
180	Reduced Contact Resistance in Inkjet Printed High-Performance Amorphous Indium Gallium Zinc Oxide Transistors. ACS Applied Materials & Interfaces, 2012, 4, 1614-1619.	8.0	66

#	Article	IF	CITATIONS
181	Quantifying the Semiconducting Fraction in Single-Walled Carbon Nanotube Samples through Comparative Atomic Force and Photoluminescence Microscopies. Nano Letters, 2009, 9, 3203-3208.	9.1	65
182	Electronically Monodisperse Singleâ€Walled Carbon Nanotube Thin Films as Transparent Conducting Anodes in Organic Photovoltaic Devices. Advanced Energy Materials, 2011, 1, 785-791.	19.5	65
183	Geometric imaging of borophene polymorphs with functionalized probes. Nature Communications, 2019, 10, 1642.	12.8	65
184	Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy and Environmental Science, 2022, 15, 645-659.	30.8	65
185	Hot Microcontact Printing for Patterning ITO Surfaces. Methodology, Morphology, Microstructure, and OLED Charge Injection Barrier Imaging. Langmuir, 2003, 19, 86-93.	3.5	64
186	High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. ACS Nano, 2019, 13, 9664-9672.	14.6	64
187	Polymorphism in Post-Dichalcogenide Two-Dimensional Materials. Chemical Reviews, 2021, 121, 2713-2775.	47.7	64
188	Nanoscale Structure and Morphology of Atomic Layer Deposition Platinum on SrTiO ₃ (001). Chemistry of Materials, 2009, 21, 516-521.	6.7	63
189	Self-Assembly and Photopolymerization of Sub-2 nm One-Dimensional Organic Nanostructures on Graphene. Journal of the American Chemical Society, 2012, 134, 16759-16764.	13.7	63
190	High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 17428-17434.	8.0	62
191	Scanning Probe Nanopatterning and Layerâ€byâ€Layer Thinning of Black Phosphorus. Advanced Materials, 2017, 29, 1604121.	21.0	62
192	Observed suppression of room temperature negative differential resistance in organic monolayers on Si(100). Nanotechnology, 2004, 15, S452-S458.	2.6	61
193	Direct Growth of High Mobility and Lowâ€Noise Lateral MoS ₂ –Graphene Heterostructure Electronics. Small, 2017, 13, 1604301.	10.0	61
194	Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring. 2D Materials, 2020, 7, 034002.	4.4	61
195	Hydrogen Sensing with Diameter- and Chirality-Sorted Carbon Nanotubes. ACS Nano, 2011, 5, 1670-1676.	14.6	60
196	Nanoscale Investigation of Solid Electrolyte Interphase Inhibition on Li-Ion Battery MnO Electrodes via Atomic Layer Deposition of Al ₂ O ₃ . Chemistry of Materials, 2014, 26, 935-940.	6.7	60
197	Influence of functional groups on the degradation of graphene oxide nanomaterials. Environmental Science: Nano, 2019, 6, 2203-2214.	4.3	60
198	Improved Monodispersity of Plasmonic Nanoantennas via Centrifugal Processing. Journal of Physical Chemistry Letters, 2011, 2, 218-222.	4.6	59

#	Article	IF	CITATIONS
199	Graphene Oxide Enhances Cellular Delivery of Hydrophilic Small Molecules by Co-incubation. ACS Nano, 2014, 8, 10168-10177.	14.6	59
200	Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders. ACS Applied Materials & Interfaces, 2017, 9, 29418-29423.	8.0	59
201	Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition. Advanced Functional Materials, 2010, 20, 3099-3105.	14.9	58
202	Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity. Surface Science, 2011, 605, 1685-1693.	1.9	58
203	Probing Carbon Nanotube–Surfactant Interactions with Two-Dimensional DOSY NMR. Journal of the American Chemical Society, 2013, 135, 6750-6753.	13.7	58
204	Readily Accessible Benzo[d]thiazole Polymers for Nonfullerene Solar Cells with >16% Efficiency and Potential Pitfalls. ACS Energy Letters, 2020, 5, 1780-1787.	17.4	58
205	Spiking neurons from tunable Gaussian heterojunction transistors. Nature Communications, 2020, 11, 1565.	12.8	58
206	Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS ₂ van der Waals Heterojunction. Journal of Physical Chemistry Letters, 2018, 9, 2484-2491.	4.6	57
207	Utilizing Carbon Nanotube Electrodes to Improve Charge Injection and Transport in Bis(trifluoromethyl)-dimethyl-rubrene Ambipolar Single Crystal Transistors. ACS Nano, 2013, 7, 10245-10256.	14.6	56
208	Tip-enhanced Raman spectroscopy: From concepts to practical applications. Chemical Physics Letters, 2016, 659, 16-24.	2.6	56
209	Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs. Nano Letters, 2018, 18, 2816-2821.	9.1	56
210	Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials. Microscopy Research and Technique, 2004, 64, 415-434.	2.2	55
211	Visualizing the Local Optical Response of Semiconducting Carbon Nanotubes to DNA-Wrapping. Nano Letters, 2008, 8, 2706-2711.	9.1	55
212	Emergent Optoelectronic Properties of Mixed-Dimensional Heterojunctions. Accounts of Chemical Research, 2020, 53, 763-772.	15.6	55
213	Layer-by-Layer Sorting of Rhenium Disulfide via High-Density Isopycnic Density Gradient Ultracentrifugation. Nano Letters, 2016, 16, 7216-7223.	9.1	54
214	Suppressing Ambient Degradation of Exfoliated InSe Nanosheet Devices via Seeded Atomic Layer Deposition Encapsulation. Nano Letters, 2018, 18, 7876-7882.	9.1	54
215	Inorganic "Conductive Glass―Approach to Rendering Mesoporous Metal–Organic Frameworks Electronically Conductive and Chemically Responsive. ACS Applied Materials & Interfaces, 2018, 10, 30532-30540.	8.0	54
216	Molecular-Orientation-Dependent Interfacial Charge Transfer in Phthalocyanine/MoS ₂ Mixed-Dimensional Heterojunctions. Journal of Physical Chemistry C, 2019, 123, 13337-13343.	3.1	54

#	Article	IF	CITATIONS
217	Electronic Coupling in Metallophthalocyanine–Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions. ACS Nano, 2019, 13, 4183-4190.	14.6	54
218	Signatures of Cooperative Effects and Transport Mechanisms in Conductance Histograms. Nano Letters, 2012, 12, 2243-2248.	9.1	53
219	Cryogenic variable temperature ultrahigh vacuum scanning tunneling microscope for single molecule studies on silicon surfaces. Review of Scientific Instruments, 2004, 75, 5280-5287.	1.3	52
220	Solution-Processed Layered Gallium Telluride Thin-Film Photodetectors. ACS Photonics, 2018, 5, 3996-4002.	6.6	52
221	Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 8107-8114.	8.0	52
222	Potentiometry and repair of electrically stressed nanowires using atomic force microscopy. Applied Physics Letters, 1998, 72, 915-917.	3.3	51
223	Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. Applied Physics Letters, 2012, 101, 043106.	3.3	51
224	Self-Aligned van der Waals Heterojunction Diodes and Transistors. Nano Letters, 2018, 18, 1421-1427.	9.1	51
225	Gate-Tunable Synaptic Dynamics of Ferroelectric-Coupled Carbon-Nanotube Transistors. ACS Applied Materials & Interfaces, 2020, 12, 4707-4714.	8.0	51
226	Graphene–Metal–Organic Framework Composite Sulfur Electrodes for Li–S Batteries with High Volumetric Capacity. ACS Applied Materials & Interfaces, 2020, 12, 37173-37181.	8.0	51
227	Emerging Opportunities for Electrostatic Control in Atomically Thin Devices. ACS Nano, 2020, 14, 6498-6518.	14.6	51
228	Layered Heterostructure Ionogel Electrolytes for Highâ€Performance Solidâ€State Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2007864.	21.0	51
229	Band Gap Photobleaching in Isolated Single-Walled Carbon Nanotubes. Nano Letters, 2003, 3, 1549-1554.	9.1	50
230	Recycling Is Not Always Good: The Dangers of Self-Plagiarism. ACS Nano, 2012, 6, 1-4.	14.6	49
231	Diameter Refinement of Semiconducting Arc Discharge Single-Walled Carbon Nanotubes via Density Gradient Ultracentrifugation. Journal of Physical Chemistry Letters, 2013, 4, 2805-2810.	4.6	49
232	Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001). Applied Physics Letters, 2014, 105, .	3.3	49
233	Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and <i>E. coli</i> . ACS Nano, 2016, 10, 6008-6019.	14.6	49
234	Nanofabrication of Heteromolecular Organic Nanostructures on Epitaxial Graphene via Room Temperature Feedback-Controlled Lithography. Nano Letters, 2011, 11, 589-593.	9.1	48

#	Article	IF	CITATIONS
235	Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer. Nano Letters, 2016, 16, 4329-4334.	9.1	48
236	Conductive Atomic Force Microscope Nanopatterning of Hydrogen-Passivated Silicon in Inert Organic Solvents. Nano Letters, 2005, 5, 91-95.	9.1	47
237	Impact of Synthesis Methods on the Transport of Single Walled Carbon Nanotubes in the Aquatic Environment. Environmental Science & amp; Technology, 2012, 46, 11752-11760.	10.0	47
238	High oncentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers. Small, 2016, 12, 294-300.	10.0	47
239	Mechanism for Al2O3 Atomic Layer Deposition on LiMn2O4 from In Situ Measurements and Ab Initio Calculations. CheM, 2018, 4, 2418-2435.	11.7	47
240	Near-equilibrium growth from borophene edges on silver. Science Advances, 2019, 5, eaax0246.	10.3	47
241	X-ray Studies of Self-Assembled Organic Monolayers Grown on Hydrogen-Terminated Si(111). Langmuir, 2004, 20, 6252-6258.	3.5	46
242	Additive manufacturing and applications of nanomaterial-based sensors. Materials Today, 2021, 48, 135-154.	14.2	46
243	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today, 2021, 37, 101061.	11.9	46
244	Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	46
245	Atomic-level study of the robustness of the Si(100)-2×1:H surface following exposure to ambient conditions. Applied Physics Letters, 2001, 78, 886-888.	3.3	45
246	Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance. Chemistry of Materials, 2016, 28, 3928-3936.	6.7	45
247	Syntheses, Structures, Physical Properties, and Theoretical Studies of CeMxOS (M = Cu, Ag; x â‰^0.8) and CeAgOS. Inorganic Chemistry, 2006, 45, 8264-8272.	4.0	44
248	Low voltage, high performance inkjet printed carbon nanotube transistors with solution processed ZrO2 gate insulator. Applied Physics Letters, 2013, 103, .	3.3	44
249	Elucidating and Mitigating Highâ€Voltage Degradation Cascades in Cobaltâ€Free LiNiO ₂ Lithiumâ€Ion Battery Cathodes. Advanced Materials, 2022, 34, e2106402.	21.0	44
250	The polarized carbon nanotube thin film LED. Optics Express, 2010, 18, 25738.	3.4	43
251	Narrow Diameter Distributions of Metallic Arc Discharge Singleâ€Walled Carbon Nanotubes via Dualâ€Iteration Density Gradient Ultracentrifugation. Advanced Materials, 2012, 24, 4765-4768.	21.0	43
252	Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy with Picosecond Excitation. Journal of Physical Chemistry Letters, 2014, 5, 2657-2661.	4.6	43

#	Article	IF	CITATIONS
253	Nanotechnology Education for the Global World: Training the Leaders of Tomorrow. ACS Nano, 2016, 10, 5595-5599.	14.6	43
254	Polymer Doping Enables a Twoâ€Ðimensional Electron Gas for Highâ€Performance Homojunction Oxide Thinâ€Film Transistors. Advanced Materials, 2019, 31, e1805082.	21.0	43
255	Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations and Scanning Tunneling Microscopy. Physical Review Letters, 2006, 97, 187601.	7.8	42
256	Inkjet Printed Circuits on Flexible and Rigid Substrates Based on Ambipolar Carbon Nanotubes with High Operational Stability. ACS Applied Materials & Interfaces, 2015, 7, 27654-27660.	8.0	42
257	Solution-Processed Carbon Nanotube True Random Number Generator. Nano Letters, 2017, 17, 4976-4981.	9.1	42
258	Identifying and characterizing epitaxial graphene domains on partially graphitized SiC(0001) surfaces using scanning probe microscopy. Applied Physics Letters, 2010, 96, .	3.3	41
259	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24110-24115.	10.3	41
260	Anhydrous Liquid-Phase Exfoliation of Pristine Electrochemically Active GeS Nanosheets. Chemistry of Materials, 2018, 30, 2245-2250.	6.7	41
261	Ultrafast Exciton Dephasing in Semiconducting Single-Walled Carbon Nanotubes. Physical Review Letters, 2008, 101, 217402.	7.8	40
262	Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems. Advanced Materials, 2022, 34, e2108025.	21.0	40
263	Implementation of Interdisciplinary Group Learning and Peer Assessment in a Nanotechnology Engineering Course. Journal of Engineering Education, 2004, 93, 49-57.	3.0	39
264	Wiring up Liquid Metal: Stable and Robust Electrical Contacts Enabled by Printable Graphene Inks. Advanced Electronic Materials, 2018, 4, 1700483.	5.1	39
265	Chiralityâ€Enriched Carbon Nanotubes for Nextâ€Generation Computing. Advanced Materials, 2020, 32, e1905654.	21.0	39
266	Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors. Scientific Reports, 2017, 7, 39627.	3.3	38
267	Atomic‣cale Observation of Electrochemically Reversible Phase Transformations in SnSe ₂ Single Crystals. Advanced Materials, 2018, 30, e1804925.	21.0	38
268	Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes. Journal of Physical Chemistry Letters, 2011, 2, 1577-1582.	4.6	37
269	Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes. Journal of Chemical Physics, 2011, 134, 034504.	3.0	37
270	Enhanced Lithiation of Doped 6H Silicon Carbide (0001) via High Temperature Vacuum Growth of Epitaxial Graphene. Journal of Physical Chemistry C, 2012, 116, 20949-20957.	3.1	37

#	Article	IF	CITATIONS
271	Templating Sub-10 nm Atomic Layer Deposited Oxide Nanostructures on Graphene via One-Dimensional Organic Self-Assembled Monolayers. Nano Letters, 2013, 13, 5763-5770.	9.1	37
272	Capacitively Coupled Hybrid Ion Gel and Carbon Nanotube Thinâ€Film Transistors for Low Voltage Flexible Logic Circuits. Advanced Functional Materials, 2018, 28, 1802610.	14.9	37
273	Nanocomposite Ionogel Electrolytes for Solidâ€State Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2002135.	19.5	37
274	Tunable Broad Light Emission from 3D "Hollow―Bromide Perovskites through Defect Engineering. Journal of the American Chemical Society, 2021, 143, 7069-7080.	13.7	37
275	Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab on A Chip, 2021, 22, 156-169.	6.0	37
276	Exciton decay dynamics in individual carbon nanotubes at room temperature. Applied Physics Letters, 2008, 92, 153116.	3.3	36
277	"Supersaturated―Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells. Journal of the American Chemical Society, 2014, 136, 17762-17773.	13.7	36
278	High‣fficiency Inverted Polymer Photovoltaics via Spectrally Tuned Absorption Enhancement. Advanced Energy Materials, 2014, 4, 1301938.	19.5	36
279	Semiconductors grown large and thin. Nature, 2015, 520, 631-632.	27.8	36
280	High aspect ratio nanotubes assembled from macrocyclic iminium salts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8883-8888.	7.1	36
281	Borophene Concentric Superlattices via Self-Assembly of Twin Boundaries. Nano Letters, 2020, 20, 1315-1321.	9.1	36
282	Bridge-enhanced nanoscale impedance microscopy. Applied Physics Letters, 2005, 87, 233117.	3.3	35
283	Consequences of Anode Interfacial Layer Deletion. HCl-Treated ITO in P3HT:PCBM-Based Bulk-Heterojunction Organic Photovoltaic Devices. Langmuir, 2010, 26, 2584-2591.	3.5	35
284	Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna. Optics Express, 2010, 18, 16443.	3.4	35
285	High-Field Transport and Thermal Reliability of Sorted Carbon Nanotube Network Devices. ACS Nano, 2013, 7, 482-490.	14.6	35
286	Ternary Polymer–Perylenediimide–Carbon Nanotube Photovoltaics with High Efficiency and Stability under Super-Solar Irradiation. ACS Energy Letters, 2016, 1, 548-555.	17.4	35
287	Tuning of Sorted Double-Walled Carbon Nanotubes by Electrochemical Charging. ACS Nano, 2010, 4, 459-469.	14.6	34
288	A Scalable, CMOS ompatible Assembly of Ambipolar Semiconducting Singleâ€Walled Carbon Nanotube Devices. Advanced Materials, 2011, 23, 1734-1738.	21.0	34

#	Article	IF	CITATIONS
289	Conductive Atomic Force Microscope Nanopatterning of Epitaxial Graphene on SiC(0001) in Ambient Conditions. Advanced Materials, 2011, 23, 2181-2184.	21.0	34
290	Transfer Printing of Sub-5 μm Graphene Electrodes for Flexible Microsupercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 22303-22310.	8.0	34
291	Metal Oxide Nanoparticle Growth on Graphene via Chemical Activation with Atomic Oxygen. Journal of the American Chemical Society, 2013, 135, 18121-18125.	13.7	33
292	Voltage-Controlled Ring Oscillators Based on Inkjet Printed Carbon Nanotubes and Zinc Tin Oxide. ACS Applied Materials & Interfaces, 2015, 7, 12009-12014.	8.0	33
293	Shape-Dependent Relaxivity of Nanoparticle-Based <i>T</i> ₁ Magnetic Resonance Imaging Contrast Agents. Journal of Physical Chemistry C, 2016, 120, 22103-22109.	3.1	33
294	Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes. ACS Nano, 2017, 11, 2992-3000.	14.6	33
295	Concurrently Approaching Volumetric and Specific Capacity Limits of Lithium Battery Cathodes via Conformal Pickering Emulsion Graphene Coatings. Advanced Energy Materials, 2020, 10, 2001216.	19.5	33
296	Reconfigurable MoS ₂ Memtransistors for Continuous Learning in Spiking Neural Networks. Nano Letters, 2021, 21, 6432-6440.	9.1	33
297	Molecular Electronics on Silicon: An Ultrahigh Vacuum Scanning Tunneling Microscopy Study. Annals of the New York Academy of Sciences, 2003, 1006, 227-234.	3.8	32
298	Photoinduced Luminescence Blinking and Bleaching in Individual Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2008, 9, 1460-1464.	2.1	32
299	Noncovalent Functionalization of DNA-Wrapped Single-Walled Carbon Nanotubes with Platinum-Based DNA Cross-Linkers. Langmuir, 2008, 24, 9784-9789.	3.5	32
300	Probing Exciton Localization in Single-Walled Carbon Nanotubes Using High-Resolution Near-Field Microscopy. ACS Nano, 2010, 4, 5914-5920.	14.6	32
301	Charge Transport through Molecular Junctions. MRS Bulletin, 2004, 29, 385-390.	3.5	31
302	Copper(I)tert-Butylthiolato Clusters as Single-Source Precursors for High-Quality Chalcocite Thin Films:Â Film Growth and Microstructure Control. Chemistry of Materials, 2007, 19, 2780-2785.	6.7	31
303	Multiferroicity of Carbonâ€Based Chargeâ€Transfer Magnets. Advanced Materials, 2015, 27, 734-739.	21.0	31
304	Sub-5 nm, globally aligned graphene nanoribbons on Ge(001). Applied Physics Letters, 2016, 108, .	3.3	31
305	Charge Separation at Mixed-Dimensional Single and Multilayer MoS ₂ /Silicon Nanowire Heterojunctions. ACS Applied Materials & Interfaces, 2018, 10, 16760-16767.	8.0	31
306	Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements. Nature Communications, 2021, 12, 3828.	12.8	31

#	Article	IF	CITATIONS
307	Light-Triggered Switching of Quantum Dot Photoluminescence through Excited-State Electron Transfer to Surface-Bound Photochromic Molecules. Nano Letters, 2021, 21, 854-860.	9.1	31
308	Kinetics and Mechanism of Atomic Force Microscope Local Oxidation on Hydrogen-Passivated Silicon in Inert Organic Solvents. Advanced Materials, 2006, 18, 1377-1380.	21.0	30
309	Defect Evolution in Graphene upon Electrochemical Lithiation. ACS Applied Materials & Interfaces, 2014, 6, 17626-17636.	8.0	30
310	Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting. Nano Letters, 2016, 16, 7370-7375.	9.1	30
311	Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 18664-18669.	13.7	30
312	Valley-selective optical Stark effect probed by Kerr rotation. Physical Review B, 2018, 97, .	3.2	30
313	Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration. Nature Communications, 2018, 9, 4095.	12.8	30
314	Ionâ€Conductive, Viscosityâ€Tunable Hexagonal Boron Nitride Nanosheet Inks. Advanced Functional Materials, 2019, 29, 1902245.	14.9	30
315	Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics. ACS Nano, 2020, 14, 3969-3979.	14.6	30
316	Bromine functionalized molecular adlayers on hydrogen passivated silicon surfaces. Chemical Physics, 2006, 326, 144-150.	1.9	29
317	Intensity-Dependent Exciton Dynamics of (6,5) Single-Walled Carbon Nanotubes: Momentum Selection Rules, Diffusion, and Nonlinear Interactions. ACS Nano, 2011, 5, 9898-9906.	14.6	29
318	Atomic Layer Deposition of Molybdenum Oxides with Tunable Stoichiometry Enables Controllable Doping of MoS ₂ . Chemistry of Materials, 2018, 30, 3628-3632.	6.7	29
319	Angstrom-Scale Spectroscopic Visualization of Interfacial Interactions in an Organic/Borophene Vertical Heterostructure. Journal of the American Chemical Society, 2021, 143, 15624-15634.	13.7	29
320	Origin of Fractureâ€Resistance to Large Volume Change in Cu‧ubstituted Co ₃ O ₄ Electrodes. Advanced Materials, 2018, 30, 1704851.	21.0	29
321	The Reemergence of Chemistry for Post-Graphene Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 4661-4663.	14.6	28
322	Revealing the Effects of Electrode Crystallographic Orientation on Battery Electrochemistry <i>via</i> the Anisotropic Lithiation and Sodiation of ReS ₂ . ACS Nano, 2018, 12, 7875-7882.	14.6	28
323	Sodiumâ€Doped Titania Selfâ€Rectifying Memristors for Crossbar Array Neuromorphic Architectures. Advanced Materials, 2022, 34, e2106913.	21.0	28
324	Spatially-resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy. Applied Physics Letters, 2004, 85, 344-346.	3.3	27

#	Article	IF	CITATIONS
325	Translocation of Single-Wall Carbon Nanotubes Through Solid-State Nanopores. Nano Letters, 2011, 11, 2446-2450.	9.1	27
326	Two-Dimensional Electronic Spectroscopy Reveals the Dynamics of Phonon-Mediated Excitation Pathways in Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2012, 12, 813-819.	9.1	27
327	Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 9947-9954.	8.0	27
328	High Volumetric Energy and Power Density Li2TiSiO5 Battery Anodes via Graphene Functionalization. Matter, 2020, 3, 522-533.	10.0	27
329	Imaging of Atomic Layer Deposited (ALD) Tungsten Monolayers on α-TiO2(110) by X-ray Standing Wave Fourier Inversion. Journal of Physical Chemistry B, 2006, 110, 12616-12620.	2.6	26
330	Nanoporous Templates and Membranes Formed by Nanosphere Lithography and Aluminum Anodization. Small, 2009, 5, 2807-2811.	10.0	26
331	Phenylacetylene One-Dimensional Nanostructures on the Si(100)-2 × 1:H Surface. Journal of the American Chemical Society, 2010, 132, 3013-3019.	13.7	26
332	Probing Charge Transfer between Shells of Doubleâ€Walled Carbon Nanotubes Sorted by Outerâ€Wall Electronic Type. Chemistry - A European Journal, 2011, 17, 9806-9815.	3.3	26
333	Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis. Applied Physics Letters, 2013, 102, 193111.	3.3	26
334	Fluoropolymer coatings for improved carbon nanotube transistor device and circuit performance. Applied Physics Letters, 2014, 105, 122107.	3.3	26
335	Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures. Applied Physics Letters, 2014, 104, .	3.3	26
336	Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation. ACS Applied Materials & Interfaces, 2016, 8, 19979-19986.	8.0	26
337	Correlated In Situ Lowâ€Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Nonâ€Fullerene Acceptors. Advanced Functional Materials, 2017, 27, 1703805.	14.9	26
338	Tunable Crystallinity and Charge Transfer in Twoâ€Dimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3985-3989.	13.8	26
339	Low-Frequency Carrier Kinetics in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 14166-14174.	8.0	26
340	Variable temperature study of the passivation of dangling bonds at Si(100)-2×1 reconstructed surfaces with H and D. Applied Physics Letters, 2002, 80, 201-203.	3.3	25
341	Microscale Features and Surface Chemical Functionality Patterned by Electron Beam Lithography:  A Novel Route to Poly(dimethylsiloxane) (PDMS) Stamp Fabrication. Langmuir, 2006, 22, 6712-6718.	3.5	25
342	Spatially Resolved Electrostatic Potential and Photocurrent Generation in Carbon Nanotube Array Devices. ACS Nano, 2012, 6, 7303-7310.	14.6	25

#	Article	IF	CITATIONS
343	Mechanisms of Gadographene-Mediated Proton Spin Relaxation. Journal of Physical Chemistry C, 2013, 117, 16263-16273.	3.1	25
344	Carbon Nanotubes in Thinâ€Film Solar Cells. Advanced Energy Materials, 2017, 7, 1601205.	19.5	25
345	Allâ€Printed Ultrahighâ€Responsivity MoS ₂ Nanosheet Photodetectors Enabled by Megasonic Exfoliation. Advanced Materials, 2022, 34, .	21.0	25
346	Structural Modifications to Polystyrene via Self-Assembling Molecules. Advanced Functional Materials, 2005, 15, 487-493.	14.9	24
347	Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization. Physical Chemistry Chemical Physics, 2013, 15, 20966.	2.8	24
348	Aerosol-jet-printed graphene electrochemical immunosensors for rapid and label-free detection of SARS-CoV-2 in saliva. 2D Materials, 2022, 9, 035016.	4.4	24
349	Nanoscale Impedance Microscopy—A Characterization Tool for Nanoelectronic Devices and Circuits. IEEE Nanotechnology Magazine, 2005, 4, 255-259.	2.0	23
350	Nanoscience and Nanotechnology in the Posthype Era. ACS Nano, 2011, 5, 1-2.	14.6	23
351	Selfâ€Assembled Nanodielectrics for Highâ€6peed, Lowâ€Voltage Solutionâ€Processed Polymer Logic Circuits. Advanced Electronic Materials, 2015, 1, 1500226.	5.1	23
352	Reducing flicker noise in chemical vapor deposition graphene field-effect transistors. Applied Physics Letters, 2016, 108, .	3.3	23
353	Silicon-Phosphorene Nanocavity-Enhanced Optical Emission at Telecommunications Wavelengths. Nano Letters, 2018, 18, 6515-6520.	9.1	23
354	An azanorbornadiene anchor for molecular-level construction on silicon(100). Nanotechnology, 2004, 15, 324-332.	2.6	22
355	Nitroxyl free radical binding to Si(100): a combined scanning tunneling microscopy and computational modeling study. Surface Science, 2004, 559, 16-28.	1.9	22
356	In Situ Raman Spectroelectrochemistry of Single-Walled Carbon Nanotubes: Investigation of Materials Enriched with (6,5) Tubes. Journal of Physical Chemistry C, 2008, 112, 14179-14187.	3.1	22
357	Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition. Electrochemistry Communications, 2010, 12, 1543-1546.	4.7	22
358	Probing the Structure and Chemistry of Perylenetetracarboxylic Dianhydride on Graphene Before and After Atomic Layer Deposition of Alumina. Journal of Physical Chemistry Letters, 2012, 3, 1974-1979.	4.6	22
359	Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Applied Physics Letters, 2014, 104, .	3.3	22
360	Understanding Charge Transfer in Carbon Nanotube–Fullerene Bulk Heterojunctions. ACS Applied Materials & Interfaces, 2015, 7, 7428-7435.	8.0	22

#	Article	IF	CITATIONS
361	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	14.6	22
362	Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals. Journal of Physical Chemistry Letters, 2019, 10, 493-499.	4.6	22
363	In Situ, Atomicâ€Resolution Observation of Lithiation and Sodiation of WS ₂ Nanoflakes: Implications for Lithium″on and Sodium″on Batteries. Small, 2021, 17, e2100637.	10.0	22
364	Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. Nature Communications, 2021, 12, 4530.	12.8	22
365	Reproducible lateral force microscopy measurements for quantitative comparisons of the frictional and chemical properties of nanostructures. Ultramicroscopy, 2004, 99, 189-196.	1.9	21
366	Probing and Tailoring pH-Dependent Interactions between Block Copolymers and Single-Walled Carbon Nanotubes for Density Gradient Sorting. Journal of Physical Chemistry C, 2012, 116, 20103-20108.	3.1	21
367	Control of interlayer physics in 2H transition metal dichalcogenides. Journal of Applied Physics, 2017, 122, .	2.5	21
368	Toxicological Profiling of Highly Purified Singleâ€Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and <i>Escherichia Coli</i> . Small, 2018, 14, e1703915.	10.0	21
369	Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
370	High aspect ratio nanoneedle probes with an integrated electrode at the tip apex. Review of Scientific Instruments, 2012, 83, 113704.	1.3	20
371	Towards Rationally Designed Grapheneâ€Based Materials and Devices. Macromolecular Chemistry and Physics, 2012, 213, 1091-1100.	2.2	20
372	Tailoring the Porosity and Microstructure of Printed Graphene Electrodes via Polymer Phase Inversion. Journal of Physical Chemistry C, 2018, 122, 13745-13750.	3.1	20
373	Ambient-Stable Two-Dimensional Crl ₃ <i>via</i> Organic-Inorganic Encapsulation. ACS Nano, 2021, 15, 10659-10667.	14.6	20
374	Nanoscale Probing of Image-Potential States and Electron Transfer Doping in Borophene Polymorphs. Nano Letters, 2021, 21, 1169-1174.	9.1	20
375	Structural Characterization of 4-Bromostyrene Self-Assembled Monolayers on Si(111). Langmuir, 2007, 23, 1905-1911.	3.5	19
376	Exciton transfer and propagation in carbon nanotubes studied by nearâ€field optical microscopy. Physica Status Solidi (B): Basic Research, 2008, 245, 2243-2246.	1.5	19
377	Orthogonal Self-Assembly of Interconnected One-Dimensional Inorganic and Organic Nanostructures on the Si(100) Surface. Journal of the American Chemical Society, 2008, 130, 12896-12897.	13.7	19
378	Conductive Scanning Probe Characterization and Nanopatterning of Electronic and Energy Materials. Journal of Physical Chemistry C, 2013, 117, 7953-7963.	3.1	19

#	Article	IF	CITATIONS
379	Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. Environmental Engineering Science, 2015, 32, 163-173.	1.6	19
380	Enhanced Uniformity and Area Scaling in Carbon Nanotube–Fullerene Bulkâ€Heterojunction Solar Cells Enabled by Solvent Additives. Advanced Energy Materials, 2016, 6, 1501466.	19.5	19
381	Realâ€Time Optical Process Monitoring for Structure and Property Control of Aerosol Jet Printed Functional Materials. Advanced Materials Technologies, 2020, 5, 2000781.	5.8	19
382	Leveraging Molecular Properties to Tailor Mixed-Dimensional Heterostructures beyond Energy Level Alignment. Journal of Physical Chemistry Letters, 2021, 12, 4543-4557.	4.6	19
383	Self-Assembled Two-Dimensional Heteromolecular Nanoporous Molecular Arrays on Epitaxial Graphene. Journal of Physical Chemistry Letters, 2014, 5, 270-274.	4.6	18
384	Plasmon-Mediated Electron Transport in Tip-Enhanced Raman Spectroscopic Junctions. Journal of Physical Chemistry Letters, 2015, 6, 4210-4218.	4.6	18
385	High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes. Applied Physics Letters, 2016, 108, 233105.	3.3	18
386	An Update from Flatland. ACS Nano, 2016, 10, 8121-8123.	14.6	18
387	Antifouling properties of two-dimensional molybdenum disulfide and graphene oxide. Environmental Science: Nano, 2018, 5, 1628-1639.	4.3	18
388	Pressure-driven water transport behavior and antifouling performance of two-dimensional nanomaterial laminated membranes. Journal of Membrane Science, 2020, 599, 117812.	8.2	18
389	Linear and Symmetric Li-Based Composite Memristors for Efficient Supervised Learning. ACS Applied Materials & Interfaces, 2022, 14, 5673-5681.	8.0	18
390	Controlled Nanoscale Morphology of Hematite (0001) Surfaces Grown by Chemical Vapor Transport. Advanced Materials, 2005, 17, 1765-1768.	21.0	17
391	Syntheses, Crystal Structures, and Physical Properties of La5Cu6O4S7 and La5Cu6.33O4S7. Inorganic Chemistry, 2008, 47, 4368-4374.	4.0	17
392	Probing structural stability of double-walled carbon nanotubes at high non-hydrostatic pressure by Raman spectroscopy. High Pressure Research, 2011, 31, 186-190.	1.2	17
393	Solution-processed graphene materials and composites. MRS Bulletin, 2012, 37, 1167-1175.	3.5	17
394	Centrifugal Shape Sorting and Optical Response of Polyhedral Gold Nanoparticles. Advanced Materials, 2013, 25, 4023-4027.	21.0	17
395	Solution-Processed Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. ACS Applied Materials & Interfaces, 2015, 7, 26360-26366.	8.0	17
396	All-Electrical Determination of Crystal Orientation in Anisotropic Two-Dimensional Materials. Physical Review Letters, 2018, 120, 086801.	7.8	17

#	Article	IF	CITATIONS
397	Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media. Molecular Systems Design and Engineering, 2019, 4, 491-502.	3.4	17
398	Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Applied Physics Reviews, 2020, 7, .	11.3	17
399	Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe–Organic van der Waals Heterostructures. ACS Nano, 2020, 14, 3509-3518.	14.6	17
400	Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with gain bandwidth product exceeding 1 GHz. Nano Research, 2021, 14, 1961-1966.	10.4	17
401	Visualizing Thermally Activated Memristive Switching in Percolating Networks of Solutionâ€Processed 2D Semiconductors. Advanced Functional Materials, 2021, 31, 2107385.	14.9	17
402	An Evaluation of the Efficacy and Transferability of a Nanoscience Module. Journal of Nano Education (Print), 2009, 1, 8-14.	0.3	17
403	Complementary D Flip-Flops Based on Inkjet Printed Single-Walled Carbon Nanotubes and Zinc Tin Oxide. IEEE Electron Device Letters, 2014, 35, 1245-1247.	3.9	16
404	Influence of Electronic Type Purity on the Lithiation of Single-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 2399-2409.	14.6	16
405	Short Channel Field-Effect-Transistors with Inkjet-Printed Semiconducting Carbon Nanotubes. Small, 2015, 11, 5505-5509.	10.0	16
406	Defects at the Two-Dimensional Limit. Journal of Physical Chemistry Letters, 2015, 6, 2738-2739.	4.6	16
407	Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors. Applied Physics Letters, 2017, 110, .	3.3	16
408	Optothermally Reversible Carbon Nanotube–DNA Supramolecular Hybrid Hydrogels. Macromolecular Rapid Communications, 2018, 39, 1700587.	3.9	16
409	Ultrahigh Vacuum Self-Assembly of Rotationally Commensurate C8-BTBT/MoS ₂ /Graphene Mixed-Dimensional Heterostructures. Chemistry of Materials, 2019, 31, 1761-1766.	6.7	16
410	Epitaxial graphene-encapsulated surface reconstruction of Ge(110). Physical Review Materials, 2018, 2, .	2.4	16
411	Building Conjugated Organic Structures on Si(111) Surfaces via Microwave-Assisted Sonogashira Coupling. Langmuir, 2010, 26, 3771-3773.	3.5	15
412	Biomoleculeâ€Directed Assembly of Self‣upported, Nanoporous, Conductive, and Luminescent Singleâ€Walled Carbon Nanotube Scaffolds. Small, 2012, 8, 1840-1845.	10.0	15
413	Tunable Radiation Response in Hybrid Organic–Inorganic Gate Dielectrics for Low-Voltage Graphene Electronics. ACS Applied Materials & Interfaces, 2016, 8, 5058-5064.	8.0	15
414	Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Nonâ€Toxic 2D Boron Nitride Effects. Small, 2021, 17, e2101084.	10.0	15

#	Article	IF	CITATIONS
415	Non-Iridescent Structural Color Control <i>via</i> Inkjet Printing of Self-Assembled Synthetic Melanin Nanoparticles. Chemistry of Materials, 2021, 33, 6433-6442.	6.7	15
416	Blade-Coatable Hexagonal Boron Nitride Ionogel Electrolytes for Scalable Production of Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 1558-1565.	17.4	15
417	Scanning tunneling microscopy study of one-dimensional o-phthalaldehydechain reactions on the Si(100)-2 × 1:H surface. Chemical Communications, 2010, 46, 1153-1155.	4.1	14
418	Aqueous-Phase Oxidation of Epitaxial Graphene on the Silicon Face of SiC(0001). Journal of Physical Chemistry C, 2014, 118, 1014-1020.	3.1	14
419	Charge-Transfer Induced Magnetic Field Effects of Nano-Carbon Heterojunctions. Scientific Reports, 2014, 4, 6126.	3.3	14
420	Graphene–Silicon Heterostructures at the Two-Dimensional Limit. Chemistry of Materials, 2015, 27, 6085-6090.	6.7	14
421	Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. Chemistry of Materials, 2017, 29, 4008-4013.	6.7	14
422	Extrinsic polarization-controlled optical anisotropy in plasmon-black phosphorus coupled system. Nanotechnology, 2018, 29, 285202.	2.6	14
423	Direct Printing of Graphene Electrodes for High-Performance Organic Inverters. ACS Applied Materials & Interfaces, 2018, 10, 15988-15995.	8.0	14
424	Application of external voltage for fouling mitigation from graphene oxide, reduced graphene oxide and molybdenum disulfide functionalized surfaces. Environmental Science: Nano, 2019, 6, 925-936.	4.3	14
425	Printable hexagonal boron nitride ionogels. Faraday Discussions, 2021, 227, 92-104.	3.2	14
426	Anisotropic thermal conductivity of layered indium selenide. Applied Physics Letters, 2021, 118, .	3.3	14
427	Self-aligned capillarity-assisted printing of top-gate thin-film transistors on plastic. Flexible and Printed Electronics, 2018, 3, 035004.	2.7	13
428	Elucidating and Mitigating High-Voltage Interfacial Chemomechanical Degradation of Nickel-Rich Lithium-Ion Battery Cathodes via Conformal Graphene Coating. ACS Applied Energy Materials, 2021, 4, 11069-11079.	5.1	13
429	Ultrasensitive Molecular Sensors Based on Realâ€Time Impedance Spectroscopy in Solutionâ€Processed 2D Materials. Advanced Functional Materials, 2022, 32, 2106830.	14.9	13
430	An approach for efficiently locating and electrically contacting nanostructures fabricated via UHV-STM lithography on Si(100). Microelectronic Engineering, 1999, 47, 235-237.	2.4	12
431	Adhesive and mechanical properties of soft nanocomposites: Model studies with blended latex films. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 3090-3102.	2.1	12
432	Ultra-high vacuum scanning tunnelling microscopy investigation of free radical adsorption to the Si(111)-7 × 7 surface. Nanotechnology, 2007, 18, 044011.	2.6	12

#	Article	IF	CITATIONS
433	Nanoscale Writing of Transparent Conducting Oxide Features with a Focused Ion Beam. Advanced Materials, 2009, 21, 721-725.	21.0	12
434	Characterization and nanopatterning of organically functionalized graphene with ultrahigh vacuum scanning tunneling microscopy. MRS Bulletin, 2011, 36, 532-542.	3.5	12
435	Near-field microwave microscopy of high- <i>κ</i> oxides grown on graphene with an organic seeding layer. Applied Physics Letters, 2013, 103, .	3.3	12
436	Self-assembled organic monolayers on epitaxial graphene with enhanced structural and thermal stability. Chemical Communications, 2014, 50, 8852-8855.	4.1	12
437	Self-Assembled Photochromic Molecular Dipoles for High-Performance Polymer Thin-Film Transistors. ACS Applied Materials & Interfaces, 2018, 10, 21492-21498.	8.0	12
438	Density-Gradient Control over Nanoparticle Supercrystal Formation. Nano Letters, 2018, 18, 6022-6029.	9.1	12
439	Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. Journal of the American Chemical Society, 2021, 143, 17153-17161.	13.7	12
440	Ingrained: An Automated Framework for Fusing Atomicâ€Scale Image Simulations into Experiments. Small, 2022, 18, e2102960.	10.0	12
441	Self-Assembled Borophene/Graphene Nanoribbon Mixed-Dimensional Heterostructures. Nano Letters, 2021, 21, 4029-4035.	9.1	11
442	Combustionâ€Assisted Photonic Sintering of Printed Liquid Metal Nanoparticle Films. Advanced Materials Technologies, 2022, 7, 2101178.	5.8	11
443	Characterizing and Mitigating Chemomechanical Degradation in High-Energy Lithium-Ion Battery Cathode Materials. Accounts of Materials Research, 2022, 3, 511-524.	11.7	11
444	Molecular Engineering of 2D Nanomaterial Fieldâ€Effect Transistor Sensors: Fundamentals and Translation across the Innovation Spectrum. Advanced Materials, 2022, 34, e2106975.	21.0	11
445	Hierarchical nanoparticle morphology for platinum supported on SrTiO3 (001): A combined microscopy and X-ray scattering study. Applied Surface Science, 2009, 256, 423-427.	6.1	10
446	Probing Surface-Adlayer Conjugation on Organic-Modified Si(111) Surfaces with Microscopy, Scattering, Spectroscopy, and Density Functional Theory. Journal of Physical Chemistry C, 2009, 113, 2919-2927.	3.1	10
447	Nanoscale Structure, Composition, and Charge Transport Analysis of Transparent Conducting Oxide Nanowires Written by Focused Ion Beam Implantation. Journal of the American Chemical Society, 2010, 132, 7347-7354.	13.7	10
448	Insights into graphene functionalization by single atom doping. Nanotechnology, 2013, 24, 505715.	2.6	10
449	Tunable Crystallinity and Charge Transfer in Twoâ€Dimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie, 2018, 130, 4049-4053.	2.0	10
450	Elucidating charge transport mechanisms in cellulose-stabilized graphene inks. Journal of Materials Chemistry C, 2020, 8, 15086-15091.	5.5	10

#	Article	IF	CITATIONS
451	Accelerated Decomposition Kinetics of Ammonium Perchlorate via Conformal Graphene Coating. Chemistry of Materials, 2021, 33, 9608-9617.	6.7	10
452	Liquid-Phase Exfoliation of Magnetically and Optoelectronically Active Ruthenium Trichloride Nanosheets. ACS Nano, 2022, 16, 11315-11324.	14.6	10
453	Ambient AFM Nanoscale Oxidation of Hydrogenâ€Passivated Silicon with Conductiveâ€Diamondâ€Coated Probes. Small, 2007, 3, 2053-2056.	10.0	9
454	Enhancement of minority carrier injection in ambipolar carbon nanotube transistors using double-gate structures. Applied Physics Letters, 2016, 109, .	3.3	9
455	Driving chemical interactions at graphene-germanium van der Waals interfaces via thermal annealing. Applied Physics Letters, 2018, 113, .	3.3	9
456	Tailoring the Optical Response of Pentacene Thin Films via Templated Growth on Hexagonal Boron Nitride. Journal of Physical Chemistry Letters, 2021, 12, 26-31.	4.6	9
457	Amorphous to Crystal Phase Change Memory Effect with Two-Fold Bandgap Difference in Semiconducting K ₂ Bi ₈ Se ₁₃ . Journal of the American Chemical Society, 2021, 143, 6221-6228.	13.7	9
458	Morphology and electrical properties of high-speed flexography-printed graphene. Mikrochimica Acta, 2022, 189, 123.	5.0	9
459	Screen-Printable Hexagonal Boron Nitride Ionogel Electrolytes for Mechanically Deformable Solid-State Lithium-Ion Batteries. Nano Letters, 2022, 22, 5372-5378.	9.1	9
460	Implications of atomic-level manipulation on the Si(100) surface: From enhanced CMOS reliability to molecular nanoelectronics. Superlattices and Microstructures, 2000, 27, 583-591.	3.1	8
461	Monitoring interface traps in operating organic light-emitting diodes using impedance spectroscopy. Thin Solid Films, 2007, 515, 4783-4787.	1.8	8
462	Control and Characterization of Cyclopentene Unimolecular Dissociation on Si(100) with Scanning Tunneling Microscopy. Journal of the American Chemical Society, 2009, 131, 10059-10065.	13.7	8
463	Nanotubes sorted using DNA. Nature, 2009, 460, 186-187.	27.8	8
464	Influence of Indium Tin Oxide Surface Treatment on Spatially Localized Photocurrent Variations in Bulk Heterojunction Organic Photovoltaic Devices. Journal of Physical Chemistry C, 2011, 115, 22688-22694.	3.1	8
465	Extrinsic and intrinsic photoresponse in monodisperse carbon nanotube thin film transistors. Applied Physics Letters, 2013, 102, .	3.3	8
466	Operational Regimes in Picosecond and Femtosecond Pulse-Excited Ultrahigh Vacuum SERS. Journal of Physical Chemistry Letters, 2016, 7, 2971-2976.	4.6	8
467	Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 4223-4229.	4.6	8
468	White Paper: Printable graphene inks stabilized with cellulosic polymers. MRS Bulletin, 2018, 43, 730-733.	3.5	8

#	Article	IF	CITATIONS
469	Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 063210.	2.1	8
470	Charge generation mechanism tuned <i>via</i> film morphology in small molecule bulk-heterojunction photovoltaic materials. Journal of Materials Chemistry C, 2020, 8, 15234-15252.	5.5	8
471	Atomic-level charge transport mechanism in gate-tunable anti-ambipolar van der Waals heterojunctions. Applied Physics Letters, 2021, 118, .	3.3	8
472	Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order. Chemistry of Materials, 2021, 33, 8712-8721.	6.7	8
473	Morphotaxy of Layered van der Waals Materials. ACS Nano, 2022, 16, 7144-7167.	14.6	8
474	Detecting elusive surface atoms with atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12531-12532.	7.1	7
475	Inâ€situ Vis/NIR spectroelectrochemistry of singleâ€walled carbon nanotubes enriched with (6,5) tubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2239-2242.	1.5	7
476	Thermally induced nanoscale structural and morphological changes for atomic-layer-deposited Pt on SrTiO3(001). Journal of Applied Physics, 2011, 110, .	2.5	7
477	Centrifugal Shape Sorting of Faceted Gold Nanoparticles Using an Atomic Plane-Selective Surfactant. Journal of Physical Chemistry Letters, 2012, 3, 1484-1487.	4.6	7
478	Hot Spot Dynamics in Carbon Nanotube Array Devices. Nano Letters, 2015, 15, 2127-2131.	9.1	7
479	Gate-tunable memristors from monolayer MoS <inf>2</inf> ., 2017, , .		7
480	Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine. Journal of Physical Chemistry Letters, 2019, 10, 3966-3971.	4.6	7
481	Amino Acid Immobilization of Copper Surface Diffusion on Cu(111). Advanced Materials Interfaces, 2019, 6, 1900021.	3.7	7
482	Aggregation morphology of planar engineered nanomaterials. Journal of Colloid and Interface Science, 2020, 561, 849-853.	9.4	7
483	Ohmicâ€Contactâ€Gated Carbon Nanotube Transistors for Highâ€Performance Analog Amplifiers. Advanced Materials, 2021, 33, e2100994.	21.0	7
484	Thermoreflectance Imaging of (Ultra)wide Band-Gap Devices with MoS ₂ Enhancement Coatings. ACS Applied Materials & Interfaces, 2021, 13, 42195-42204.	8.0	7
485	Probing borophene oxidation at the atomic scale. Nanotechnology, 2022, 33, 235702.	2.6	7
486	Adhesive Transfer of Thin Viscoelastic Films. Langmuir, 2005, 21, 178-186.	3.5	6

Mark C Hersam

#	Article	IF	CITATIONS
487	Atomically Resolved Charge Redistribution for Ga Nanocluster Arrays on the Si(111)â€7 × 7 Surface. Sr 2008, 4, 915-919.	nall 10:0	6
488	Electron dynamics of the buffer layer and bilayer graphene on SiC. Applied Physics Letters, 2014, 104, .	3.3	6
489	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	14.6	6
490	Response to Comment on "Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environmentâ€: Environmental Science & Technology, 2014, 48, 1360-1360.	10.0	6
491	Towards quantification of the ratio of the single and double wall carbon nanotubes in their mixtures: An in situ Raman spectroelectrochemical study. Carbon, 2014, 78, 366-373.	10.3	6
492	Selective Crystal Growth and Structural, Optical, and Electronic Studies of Mn3Ta2O8. Inorganic Chemistry, 2015, 54, 6513-6519.	4.0	6
493	An inkjet printed piezoresistive back-to-back graphene tactile sensor for endosurgical palpation applications. , 2017, , .		6
494	Selective Transfer of Rotationally Commensurate MoS ₂ from an Epitaxially Grown van der Waals Heterostructure. Chemistry of Materials, 2018, 30, 8495-8500.	6.7	6
495	Mechanism of Long-Range Energy Transfer from Quantum Dots to Black Phosphorus. Journal of Physical Chemistry C, 2021, 125, 15458-15464.	3.1	6
496	Probing individual nanoscale organic light-emitting diodes with atomic force electroluminescence microscopy and bridge-enhanced nanoscale impedance microscopy. Organic Electronics, 2007, 8, 465-479.	2.6	5
497	Subnanometer Imaging of Adsorbate-Induced Electronic Structure Perturbation on Silicon Surfaces. Journal of Physical Chemistry C, 2008, 112, 2116-2120.	3.1	5
498	Big Roles for Nanocenters. ACS Nano, 2015, 9, 8639-8640.	14.6	5
499	Inkjet printed carbon nanotubes in short channel field effect transistors: influence of nanotube distortion and gate insulator interface modification. Flexible and Printed Electronics, 2016, 1, 035001.	2.7	5
500	Abrupt Thermal Shock of (NH ₄) ₂ Mo ₃ S ₁₃ Leads to Ultrafast Synthesis of Porous Ensembles of MoS ₂ Nanocrystals for High Gain Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 38193-38200.	8.0	5
501	Thickness-dependent charge transport in exfoliated indium selenide vertical field-effect transistors. Applied Physics Letters, 2019, 115, 243104.	3.3	5
502	An Inkjet Printing Technique for Scalable Microfabrication of Graphene-Based Sensor Components. IEEE Access, 2020, 8, 79338-79346.	4.2	5
503	Monitoring and Analyzing Nonlinear Dynamics in Atomic Force Microscopy. Small, 2006, 2, 1122-1124.	10.0	4
504	Photoluminescence from disorder induced states in individual singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2679-2682.	1.5	4

#	Article	IF	CITATIONS
505	Progress towards monodisperse single-walled carbon nanotubes. , 2009, , 3-10.		4
506	Graphene Ink as a Conductive Templating Interlayer for Enhanced Charge Transport of C ₆₀ -Based Devices. ACS Applied Materials & Interfaces, 2016, 8, 29594-29599.	8.0	4
507	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
508	Measuring Dipole Inversion in Self-Assembled Nano-Dielectric Molecular Layers. ACS Applied Materials & Interfaces, 2018, 10, 6484-6490.	8.0	4
509	Lithium-Ion Batteries: Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe2 Single Crystals (Adv. Mater. 51/2018). Advanced Materials, 2018, 30, 1870393.	21.0	4
510	Lithium Electrochemistry of WS2 Nanoflakes Studied by In-situ TEM. Microscopy and Microanalysis, 2018, 24, 1860-1861.	0.4	4
511	Large-scale, nonsubtractive patterning of transparent conducting oxides by ion bombardment. Applied Physics Letters, 2011, 99, 022110.	3.3	3
512	Measuring Single-Wall Carbon Nanotubes with Solid-State Nanopores. Methods in Molecular Biology, 2012, 870, 227-239.	0.9	3
513	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	14.6	3
514	Edge states in the honeycomb reconstruction of two-dimensional silicon nanosheets. Applied Physics Letters, 2019, 115, 023102.	3.3	3
515	2D materials: molecular design and engineering perspectives. Molecular Systems Design and Engineering, 2019, 4, 469-470.	3.4	3
516	n-Doping of Quantum Dots by Lithium Ion Intercalation. ACS Applied Materials & Interfaces, 2020, 12, 36523-36529.	8.0	3
517	Artificial Neural Networks: Dualâ€Gated MoS ₂ Memtransistor Crossbar Array (Adv. Funct.) Tj ETQq1	1 0.7843 14.9	914 rgBT /Ov
518	Room temperature molecular resolution nanopatterning of cyclopentene monolayers on Si(100) via feedback controlled lithography. Applied Physics Letters, 2013, 102, 243106.	3.3	2
519	Preface to Special Topic: Two-Dimensional Materials. APL Materials, 2014, 2, 092201.	5.1	2
520	Carbon Nanotubes: Enhanced Uniformity and Area Scaling in Carbon Nanotube–Fullerene Bulkâ€Heterojunction Solar Cells Enabled by Solvent Additives (Adv. Energy Mater. 2/2016). Advanced Energy Materials, 2016, 6, .	19.5	2
521	Transistors: Layerâ€byâ€Layer Assembled 2D Montmorillonite Dielectrics for Solutionâ€Processed Electronics (Adv. Mater. 1/2016). Advanced Materials, 2016, 28, 203-203.	21.0	2
522	Prof. Millie Dresselhaus (1930–2017), Carbon Nanomaterials Pioneer. ACS Nano, 2017, 11, 2307-2308.	14.6	2

#	Article	IF	CITATIONS
523	Anisotropic Lithiation and Sodiation of ReS2 Studied by In-situ TEM. Microscopy and Microanalysis, 2018, 24, 1570-1571.	0.4	2
524	2D materials production and generation of functional inks: general discussion. Faraday Discussions, 2021, 227, 141-162.	3.2	2
525	Fundamentals and applications of mixed-dimensional heterostructures. APL Materials, 2022, 10, .	5.1	2
526	Optical absorption and transient photobleaching in solutions of surfactant-encapsulated and DNA-wrapped single-walled carbon nanotubes. , 2004, 5359, 376.		1
527	Polymer—Inorganic Nanocomposites from Si-Based Substrates: Applications of Ring-Opening Metathesis Polymerization. ACS Symposium Series, 2008, , 303-321.	0.5	1
528	Applications: High-Performance Materials and Emerging Areas. , 2011, , 467-499.		1
529	Broad-Spectral-Response Nanocarbon Bulk-Heterojunction Excitonic Photodetectors (Adv. Mater.) Tj ETQq1 1 0.3	784314 rg 21.0	BT ₁ /Overlock
530	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	14.6	1
531	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	14.6	1
532	Elucidating and Mitigating Highâ€Voltage Degradation Cascades in Cobaltâ€Free LiNiO ₂ Lithiumâ€Ion Battery Cathodes (Adv. Mater. 3/2022). Advanced Materials, 2022, 34, .	21.0	1
533	Fully printed and flexible multi-material electrochemical aptasensor platform enabled by selective graphene biofunctionalization. Engineering Research Express, 2022, 4, 015037.	1.6	1
534	Field-effect conductivity scaling for two-dimensional materials with tunable impurity density. 2D Materials, 0, , .	4.4	1
535	Stability, metallicity, and magnetism in niobium silicide nanofilms. Physical Review Materials, 2022, 6, .	2.4	1
536	Nanoscale Control of Friction and Chemistry on Silicon Surfaces. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	0
537	Top-gated Thin Film FETs Fabricated from Arrays of Self-aligned Semiconducting Carbon Nanotubes. , 2008, , .		0
538	Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition. Advanced Functional Materials, 2010, 20, n/a-n/a.	14.9	0
539	Polymer Solar Cells: Highâ€Efficiency Inverted Polymer Photovoltaics via Spectrally Tuned Absorption Enhancement (Adv. Energy Mater. 14/2014). Advanced Energy Materials, 2014, 4, .	19.5	0

540 Charge-Transfer Magnets: Multiferroicity of Carbon-Based Charge-Transfer Magnets (Adv. Mater.) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50

#	Article	IF	CITATIONS
541	Emerging device applications for two-dimensional nanomaterial heterostructures. , 2015, , .		0
542	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	14.6	0
543	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	14.6	0
544	Immobilized Cu Adatoms: Amino Acid Immobilization of Copper Surface Diffusion on Cu(111) (Adv.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
545	Lithiumâ€lon Batteries: Layered Heterostructure Ionogel Electrolytes for Highâ€Performance Solidâ€State Lithiumâ€lon Batteries (Adv. Mater. 13/2021). Advanced Materials, 2021, 33, 2170099.	21.0	0
546	Lithium/Sodiumâ€Ion Batteries: In Situ, Atomicâ€Resolution Observation of Lithiation and Sodiation of WS ₂ Nanoflakes: Implications for Lithiumâ€Ion and Sodiumâ€Ion Batteries (Small 24/2021). Small, 2021, 17, 2170120.	10.0	0
547	Exciton Dynamics in Bundled and Unbundled (6,5) Carbon Nanotubes. , 2006, , .		0
548	Two-Dimensional Electronic Spectroscopy of Semiconducting Single-Walled Carbon Nanotubes. , 2010, , \cdot		0
549	(Invited) Hexagonal Boron Nitride Ionogel Electrolytes for Solid-State Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 825-825.	0.0	0
550	Back electron transfer rates determine the photoreactivity of donor–acceptor stilbene complexes in a macrocyclic host. Organic and Biomolecular Chemistry, 2022, 20, 6201-6210.	2.8	0
551	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	14.6	0
552	Ultrasensitive Molecular Sensors Based on Realâ€Time Impedance Spectroscopy in Solutionâ€Processed 2D Materials (Adv. Funct. Mater. 12/2022). Advanced Functional Materials, 2022, 32, .	14.9	0
553	Gate-Tunable Neuromorphic Devices Enabled by Two-Dimensional Materials. , 2022, , .		0