Mark C Hersam

List of Publications by Citations

Source: https://exaly.com/author-pdf/9153945/mark-c-hersam-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

515	42,971	102	192
papers	citations	h-index	g-index
570 ext. papers	48,755 ext. citations	12.4 avg, IF	8.02 L-index

#	Paper	IF	Citations
515	Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. <i>ACS Nano</i> , 2014 , 8, 1102-20	16.7	1909
514	Sorting carbon nanotubes by electronic structure using density differentiation. <i>Nature Nanotechnology</i> , 2006 , 1, 60-5	28.7	1870
513	Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. <i>Science</i> , 2015 , 350, 1513-6	33.3	1479
512	Effective passivation of exfoliated black phosphorus transistors against ambient degradation. <i>Nano Letters</i> , 2014 , 14, 6964-70	11.5	1117
511	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. <i>Chemical Society Reviews</i> , 2013 , 42, 2824-60	58.5	941
510	Mixed-dimensional van der Waals heterostructures. <i>Nature Materials</i> , 2017 , 16, 170-181	27	897
509	Progress towards monodisperse single-walled carbon nanotubes. <i>Nature Nanotechnology</i> , 2008 , 3, 387	-9<u>4</u>8. 7	793
508	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381	16.7	714
507	Solution phase production of graphene with controlled thickness via density differentiation. <i>Nano Letters</i> , 2009 , 9, 4031-6	11.5	643
506	Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. <i>Nature Chemistry</i> , 2016 , 8, 597-602	17.6	574
505	Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. <i>ACS Nano</i> , 2015 , 9, 3596-60)4 16.7	561
504	Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. <i>ACS Nano</i> , 2015 , 9, 4636-48	16.7	508
503	Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. <i>Nano Letters</i> , 2011 , 11, 2865-70	11.5	499
502	Current saturation and electrical breakdown in multiwalled carbon nanotubes. <i>Physical Review Letters</i> , 2001 , 86, 3128-31	7.4	493
501	Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. <i>Nature Communications</i> , 2015 , 6, 8632	17.4	491
500	Inkjet Printing of High Conductivity, Flexible Graphene Patterns. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1347-51	6.4	489
499	Synthesis and chemistry of elemental 2D materials. <i>Nature Reviews Chemistry</i> , 2017 , 1,	34.6	475

(2014-2018)

498	Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. <i>Nature</i> , 2018 , 554, 500-504	50.4	469	
497	Enrichment of single-walled carbon nanotubes by diameter in density gradients. <i>Nano Letters</i> , 2005 , 5, 713-8	11.5	441	
496	Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. <i>Nano Letters</i> , 2011 , 11, 5201-7	11.5	427	
495	Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. <i>Nature Nanotechnology</i> , 2015 , 10, 403-6	28.7	426	
494	Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. <i>ACS Nano</i> , 2008 , 2, 2445-52	16.7	424	
493	Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. <i>Environmental Science & Environmental </i>	10.3	410	
492	Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. <i>Nature Chemistry</i> , 2009 , 1, 206-11	17.6	373	
491	Room Temperature Negative Differential Resistance through Individual Organic Molecules on Silicon Surfaces. <i>Nano Letters</i> , 2004 , 4, 55-59	11.5	344	
490	High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. <i>Advanced Materials</i> , 2015 , 27, 109-15	24	336	
489	Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano, 2010, 4, 4388-	95 6.7	323	
488	Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. <i>Applied Physics Letters</i> , 2013 , 102, 173107	3.4	316	
487	Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 18076-80	11.5	304	
486	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. <i>2D Materials</i> , 2016 , 3, 042001	5.9	297	
485	Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. <i>Nano Letters</i> , 2008 , 8, 1417-22	11.5	294	
484	Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16345-56	16.4	290	
483	Functional inks and printing of two-dimensional materials. <i>Chemical Society Reviews</i> , 2018 , 47, 3265-33	06 8.5	268	
482	Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. <i>Nature Chemistry</i> , 2012 , 4, 305-9	17.6	260	
481	Gravure printing of graphene for large-area flexible electronics. <i>Advanced Materials</i> , 2014 , 26, 4533-8	24	252	

480	Polyelemental nanoparticle libraries. <i>Science</i> , 2016 , 352, 1565-9	33.3	244
479	Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2. <i>Nano Letters</i> , 2016 , 16, 497-503	11.5	240
478	Borophene as a prototype for synthetic 2D materials development. <i>Nature Nanotechnology</i> , 2018 , 13, 444-450	28.7	237
477	Photoactuators and motors based on carbon nanotubes with selective chirality distributions. <i>Nature Communications</i> , 2014 , 5, 2983	17.4	223
476	Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics. <i>Advanced Materials</i> , 2015 , 27, 6683-8	24	220
475	Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17661-3	16.4	215
474	Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. <i>ACS Nano</i> , 2014 , 8, 10551-8	16.7	209
473	Neuromorphic nanoelectronic materials. <i>Nature Nanotechnology</i> , 2020 , 15, 517-528	28.7	207
472	In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy. <i>Advanced Energy Materials</i> , 2012 , 2, 120-128	21.8	207
471	Silicon-based molecular nanotechnology. <i>Nanotechnology</i> , 2000 , 11, 70-76	3.4	197
470	Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. <i>ACS Nano</i> , 2016 , 10, 3900-17	16.7	192
469	Low-frequency electronic noise in single-layer MoS2 transistors. <i>Nano Letters</i> , 2013 , 13, 4351-5	11.5	188
468	Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 stage delays. <i>Nano Letters</i> , 2013 , 13, 954-60	11.5	187
467	Emerging Methods for Producing Monodisperse Graphene Dispersions. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 544-549	6.4	183
466	Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter. <i>Environmental Science & Environmental Science & Envir</i>	10.3	182
465	Stable aqueous dispersions of optically and electronically active phosphorene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11688-11693	11.5	179
464	Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus. <i>Advanced Materials</i> , 2015 , 27, 8017-	22 ₄	178
463	Processing and properties of highly enriched double-wall carbon nanotubes. <i>Nature Nanotechnology</i> , 2009 , 4, 64-70	28.7	176

462	Atomic covalent functionalization of graphene. Accounts of Chemical Research, 2013, 46, 77-86	24.3	173
461	In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 773-8	6.4	172
460	Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2508-2513	6.4	169
459	Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. <i>Nano Letters</i> , 2010 , 10, 1664-70	11.5	168
458	Solution-processed carbon nanotube thin-film complementary static random access memory. <i>Nature Nanotechnology</i> , 2015 , 10, 944-8	28.7	163
457	Effect of Dimensionality on the Photocatalytic Behavior of Carbon-Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1760-5	6.4	163
456	Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. <i>ACS Nano</i> , 2018 , 12, 1390-1402	16.7	154
455	Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. ACS Nano, 2016, 10, 1067-75	16.7	154
454	High-Concentration Aqueous Dispersions of Graphene Using Nonionic, Biocompatible Block Copolymers. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1004-1008	6.4	153
453	Nanotechnology Research Directions for Societal Needs in 2020 2011 ,		151
453 452	Nanotechnology Research Directions for Societal Needs in 2020 2011 , Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555	9.4	151 149
	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic	9.4	149
452	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555 Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic		149
45 ² 45 ¹	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555 Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. <i>ACS Nano</i> , 2011 , 5, 5223-32 Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density	16.7	149
45 ² 45 ¹ 45 ⁰	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555 Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. <i>ACS Nano</i> , 2011 , 5, 5223-32 Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. <i>Advanced Materials</i> , 2011 , 23, 2185-90	16.7 24 73·3	149 149 149
45 ² 45 ¹ 45 ⁰	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555 Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. <i>ACS Nano</i> , 2011 , 5, 5223-32 Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. <i>Advanced Materials</i> , 2011 , 23, 2185-90 2D materials for quantum information science. <i>Nature Reviews Materials</i> , 2019 , 4, 669-684	16.7 24 73·3	149 149 149
45 ² 45 ¹ 45 ⁰ 449	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555 Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. <i>ACS Nano</i> , 2011 , 5, 5223-32 Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. <i>Advanced Materials</i> , 2011 , 23, 2185-90 2D materials for quantum information science. <i>Nature Reviews Materials</i> , 2019 , 4, 669-684 Electronic Transport in Two-Dimensional Materials. <i>Annual Review of Physical Chemistry</i> , 2018 , 69, 299-30 Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. <i>Journal of Physical</i>	16.7 24 73·3 3 25 .7	149 149 149 146

444	Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. <i>Analytical Chemistry</i> , 2010 , 82, 1270-6	7.8	141	
443	Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells. <i>Chemistry of Materials</i> , 2011 , 23, 2218-2226	9.6	141	
442	Isolation of single-walled carbon nanotube enantiomers by density differentiation. <i>Nano Research</i> , 2009 , 2, 69-77	10	138	
441	Scalable, Self-Aligned Printing of Flexible Graphene Micro-Supercapacitors. <i>Advanced Energy Materials</i> , 2017 , 7, 1700285	21.8	137	
440	Substrate-Induced Nanoscale Undulations of Borophene on Silver. <i>Nano Letters</i> , 2016 , 16, 6622-6627	11.5	136	
439	Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS van der Waals Heterojunction. <i>Nano Letters</i> , 2017 , 17, 164-169	11.5	135	
438	Borophene Synthesis on Au(111). <i>ACS Nano</i> , 2019 , 13, 3816-3822	16.7	134	
437	Direct oriented growth of armchair graphene nanoribbons on germanium. <i>Nature Communications</i> , 2015 , 6, 8006	17.4	134	
436	Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15399-403	16.4	132	
435	Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. <i>Accounts of Chemical Research</i> , 2017 , 50, 943-951	24.3	131	
434	CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8796-804	16.4	130	
433	Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. <i>ACS Nano</i> , 2012 , 6, 7480-8	16.7	129	
432	The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth MBwald. <i>ACS Nano</i> , 2019 , 13, 6151-6169	16.7	127	
431	Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. <i>ACS Nano</i> , 2016 , 10, 10966-10980	16.7	127	
430	Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. <i>Langmuir</i> , 2005 , 21, 4705-9	⁾ 4	127	
429	High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. <i>Nano Letters</i> , 2014 , 14, 3683-7	11.5	122	
428	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14532-14547	16.4	120	
427	All-Printed, Foldable Organic Thin-Film Transistors on Glassine Paper. Advanced Materials, 2015, 27, 705	8 2. 64	118	

(2014-2016)

426	High-Performance Solid-State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. <i>Advanced Energy Materials</i> , 2016 , 6, 1600909	21.8	117
425	Flexible gigahertz transistors derived from solution-based single-layer graphene. <i>Nano Letters</i> , 2012 , 12, 1184-8	11.5	117
424	Investigation of band-offsets at monolayer-multilayer MoSIJunctions by scanning photocurrent microscopy. <i>Nano Letters</i> , 2015 , 15, 2278-84	11.5	115
423	Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose. <i>Chemistry of Materials</i> , 2017 , 29, 2332-2340	9.6	111
422	Recent Advances in Tip-Enhanced Raman Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3125-30	6.4	109
421	Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 620-6	6.4	109
420	Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3881-7	16.4	108
419	Exciton energy transfer in pairs of single-walled carbon nanotubes. <i>Nano Letters</i> , 2008 , 8, 1363-7	11.5	107
418	Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. <i>Nano Letters</i> , 2016 , 16, 2580-5	11.5	106
417	Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. <i>Cement and Concrete Composites</i> , 2012 , 34, 612-617	8.6	105
416	Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 4961-4982	68.1	104
415	Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge. <i>ACS Nano</i> , 2008 , 2, 2291-300	16.7	102
414	Polychiral semiconducting carbon nanotube-fullerene solar cells. <i>Nano Letters</i> , 2014 , 14, 5308-14	11.5	101
413	Recent Developments in Carbon Nanotube Sorting and Selective Growth. MRS Bulletin, 2010, 35, 315-32	23.2	97
412	Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. <i>Nature Communications</i> , 2014 , 5, 5478	17.4	95
411	Solid-source growth and atomic-scale characterization of graphene on Ag(111). <i>Nature Communications</i> , 2013 , 4,	17.4	95
410	Hybrid gate dielectric materials for unconventional electronic circuitry. <i>Accounts of Chemical Research</i> , 2014 , 47, 1019-28	24.3	94
409	Silicon growth at the two-dimensional limit on Ag(111). ACS Nano, 2014, 8, 7538-47	16.7	93

408	Pump-Probe Spectroscopy of Exciton Dynamics in (6,5) Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3831-3835	3.8	93
4 ⁰ 7	Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. <i>Environmental Science & Deposition (Company)</i> 2014, 48, 961-9	10.3	92
406	Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors. <i>Advanced Materials</i> , 2013 , 25, 3433-7	24	92
405	Intermixing and periodic self-assembly of borophene line defects. <i>Nature Materials</i> , 2018 , 17, 783-788	27	90
404	Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. <i>ACS Nano</i> , 2015 , 9, 3032-43	16.7	90
403	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 783-791	16.4	90
402	Conformational Contrast of Surface-Mediated Molecular Switches Yields figstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. <i>Nano Letters</i> , 2016 , 16, 7774-7778	11.5	87
401	In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode. <i>Chemistry of Materials</i> , 2012 , 24, 3038-3043	9.6	87
400	Interface Characterization and Control of 2D Materials and Heterostructures. <i>Advanced Materials</i> , 2018 , 30, e1801586	24	85
399	Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene. Journal of Physical Chemistry C, 2016 , 120, 20798-20805	3.8	84
398	Emerging Opportunities for Two-Dimensional Materials in Lithium-Ion Batteries. <i>ACS Energy Letters</i> , 2017 , 2, 2026-2034	20.1	84
397	Probing charge transport at the single-molecule level on silicon by using cryogenic ultra-high vacuum scanning tunneling microscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 8838-43	11.5	84
396	Electronic and Mechanical Properties of Graphene-Germanium Interfaces Grown by Chemical Vapor Deposition. <i>Nano Letters</i> , 2015 , 15, 7414-20	11.5	83
395	High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics. <i>ACS Nano</i> , 2017 , 11, 7431-7439	16.7	83
394	High-frequency performance of scaled carbon nanotube array field-effect transistors. <i>Applied Physics Letters</i> , 2012 , 101, 053123	3.4	83
393	Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. <i>Nano Letters</i> , 2013 , 13, 4810-4	11.5	82
392	Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. <i>Nano Letters</i> , 2016 , 16, 3898-904	11.5	81
391	Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale. <i>ACS Nano</i> , 2013 , 7, 885-8	16.7	79

(2009-2015)

390	Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets. <i>Nano Letters</i> , 2015 , 15, 7029-36	11.5	78	
389	Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces. <i>Environmental Science & Environmental Science & En</i>	10.3	78	
388	Assembly and Electronic Applications of Colloidal Nanomaterials. <i>Advanced Materials</i> , 2017 , 29, 160389)5 ₂₄	78	
387	Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ashBement systems. <i>Materials and Structures/Materiaux Et Constructions</i> , 2014 , 47, 1011-1023	3.4	78	
386	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. <i>Small</i> , 2015 , 11, 5079-87	11	76	
385	Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling. <i>Nano Letters</i> , 2016 , 16, 7121-7	127 .5	75	
384	Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS-Polymer Heterojunctions. <i>ACS Nano</i> , 2016 , 10, 10573-10579	16.7	74	
383	Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type. <i>ACS Nano</i> , 2011 , 5, 1459-67	16.7	73	
382	Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. <i>ACS Nano</i> , 2010 , 4, 4725-32	16.7	73	
381	G-quadruplex organic frameworks. <i>Nature Chemistry</i> , 2017 , 9, 466-472	17.6	72	
380	Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced Raman and Fluorescence Spectroscopy. <i>Nano Letters</i> , 2015 , 15, 4114-20	11.5	71	
379	Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures. <i>Advanced Materials</i> , 2016 , 28, 3742-8	24	70	
378	Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. <i>Nano Letters</i> , 2009 , 9, 2010-4	11.5	70	
377	Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. <i>Nano Letters</i> , 2015 , 15, 416-21	11.5	68	
376	Three-Dimensional Printing of Cytocompatible, Thermally Conductive Hexagonal Boron Nitride Nanocomposites. <i>Nano Letters</i> , 2018 , 18, 3488-3493	11.5	67	
375	Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion. <i>Nano Letters</i> , 2017 , 17, 2539-2546	11.5	66	
374	Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. <i>ACS Applied Materials & Districted Synthesis</i> , 10, 26972-26981	9.5	66	
373	Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon. Annual Review of Physical Chemistry, 2009 , 60, 193-216	15.7	66	

372	Room temperature nanofabrication of atomically registeredheteromolecular organosilicon nanostructures using multistepfeedback controlled lithography. <i>Applied Physics Letters</i> , 2004 , 85, 2619-	2621	66
371	Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy. <i>Advanced Materials</i> , 2011 , 23, 5613-7	24	65
370	Self-assembly of electronically abrupt borophene/organic lateral heterostructures. <i>Science Advances</i> , 2017 , 3, e1602356	14.3	64
369	Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 11884-93	9.5	63
368	Ultracentrifugation of single-walled nanotubes. <i>Materials Today</i> , 2007 , 10, 59-60	21.8	63
367	Reduced contact resistance in inkjet printed high-performance amorphous indium gallium zinc oxide transistors. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 2012, 4, 1614-9	9.5	62
366	Nanoscale Structure and Morphology of Atomic Layer Deposition Platinum on SrTiO3 (001). <i>Chemistry of Materials</i> , 2009 , 21, 516-521	9.6	62
365	Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. <i>Nano Letters</i> , 2009 , 9, 3203-8	11.5	62
364	Tuning the Properties of Transparent Oxide Conductors. Dopant Ion Size and Electronic Structure Effects on CdO-Based Transparent Conducting Oxides. Ga- and In-Doped CdO Thin Films Grown by MOCVD. <i>Chemistry of Materials</i> , 2008 , 20, 220-230	9.6	61
363	Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 21116-21124	3.8	60
362	Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene. <i>Advanced Energy Materials</i> , 2015 , 5, 1500646	21.8	60
361	Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2306	-15.4	60
360	Solution-Based Processing of Optoelectronically Active Indium Selenide. <i>Advanced Materials</i> , 2018 , 30, e1802990	24	59
359	Ambient-processable high capacitance hafnia-organic self-assembled nanodielectrics. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8926-39	16.4	59
358	Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. <i>Small</i> , 2013 , 9, 45-51	11	59
357	Electronically Monodisperse Single-Walled Carbon Nanotube Thin Films as Transparent Conducting Anodes in Organic Photovoltaic Devices. <i>Advanced Energy Materials</i> , 2011 , 1, 785-791	21.8	59
356	Hot Microcontact Printing for Patterning ITO Surfaces. Methodology, Morphology, Microstructure, and OLED Charge Injection Barrier Imaging. <i>Langmuir</i> , 2003 , 19, 86-93	4	59
355	Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16759-64	16.4	58

(2017-2004)

354	Observed suppression of room temperature negative differential resistance in organic monolayers on Si(100). <i>Nanotechnology</i> , 2004 , 15, S452-S458		58
353	Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. <i>Applied Physics Letters</i> , 2017 , 110, 053101		57
352	Chemically resolved interface structure of epitaxial graphene on SiC(0001). <i>Physical Review Letters</i> , 2013 , 111, 215501		57
351	Quantitatively enhanced reliability and uniformity of high-dielectrics on graphene enabled by self-assembled seeding layers. <i>Nano Letters</i> , 2013 , 13, 1162-7	5	57
350	Resolving the In-Plane Anisotropic Properties of Black Phosphorus. <i>Small Methods</i> , 2017 , 1, 1700143 12.	8	56
349	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018 , 12, 6360-687	77	56
348	Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. ACS Nano, 2016 , 10, 9093-91.	93	56
347	Improved Monodispersity of Plasmonic Nanoantennas via Centrifugal Processing. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 218-222		55
346	Fully Inkjet-Printed, Mechanically Flexible MoS Nanosheet Photodetectors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5675-5681		53
345	3D Anisotropic Thermal Conductivity of Exfoliated Rhenium Disulfide. <i>Advanced Materials</i> , 2017 , 29, 170@6!	50	53
344	Probing carbon nanotube-surfactant interactions with two-dimensional DOSY NMR. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6750-3	4	53
343	Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity. <i>Surface Science</i> , 2011 , 605, 1685-1693		53
342	Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS Applied Materials & Damp; Interfaces, 2020, 12, 8592-8603		52
341	Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation. <i>ACS Nano</i> , 2014 , 8, 10168-77	7	52
340	Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics. <i>Advanced Materials</i> , 2016 , 28, 63-8		52
339	Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders. <i>ACS Applied Materials & District Amplied Materials & District & District Amplied Materials & District & Di</i>		51
338	Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition. <i>Advanced Functional Materials</i> , 2010 , 20, 3099-3105	6	51
337	Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1343-1350		50

336	Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5948-5954	16.4	50
335	Borophene-graphene heterostructures. <i>Science Advances</i> , 2019 , 5, eaax6444	14.3	50
334	Nanoscale Investigation of Solid Electrolyte Interphase Inhibition on Li-Ion Battery MnO Electrodes via Atomic Layer Deposition of Al2O3. <i>Chemistry of Materials</i> , 2014 , 26, 935-940	9.6	50
333	Direct Growth of High Mobility and Low-Noise Lateral MoS -Graphene Heterostructure Electronics. <i>Small</i> , 2017 , 13, 1604301	11	49
332	Scanning Probe Nanopatterning and Layer-by-Layer Thinning of Black Phosphorus. <i>Advanced Materials</i> , 2017 , 29, 1604121	24	49
331	Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano, 2011, 5, 1670-6	16.7	49
330	Cryogenic variable temperature ultrahigh vacuum scanning tunneling microscope for single molecule studies on silicon surfaces. <i>Review of Scientific Instruments</i> , 2004 , 75, 5280-5287	1.7	48
329	Band Gap Photobleaching in Isolated Single-Walled Carbon Nanotubes. <i>Nano Letters</i> , 2003 , 3, 1549-155	411.5	48
328	Signatures of cooperative effects and transport mechanisms in conductance histograms. <i>Nano Letters</i> , 2012 , 12, 2243-8	11.5	47
327	Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping. <i>Nano Letters</i> , 2008 , 8, 2706-11	11.5	47
326	Tip-enhanced Raman spectroscopy: From concepts to practical applications. <i>Chemical Physics Letters</i> , 2016 , 659, 16-24	2.5	46
325	Synthesis of borophane polymorphs through hydrogenation of borophene. <i>Science</i> , 2021 , 371, 1143-114	4 § 3.3	46
324	Fluorinating Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2000635	21.8	45
323	High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes. <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Distriction of Chemical Stable Graphene Electrodes</i> .	9.5	45
322	Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors. <i>ACS Nano</i> , 2013 , 7, 10245-56	16.7	45
321	Potentiometry and repair of electrically stressed nanowires using atomic force microscopy. <i>Applied Physics Letters</i> , 1998 , 72, 915-917	3.4	45
320	Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> , 2019 , 10, 1642	17.4	44
319	Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. <i>Applied Physics Letters</i> , 2012 , 101, 043106	3.4	44

(2019-2004)

318	X-ray studies of self-assembled organic monolayers grown on hydrogen-terminated Si(111). <i>Langmuir</i> , 2004 , 20, 6252-8	4	44
317	Layer-by-Layer Sorting of Rhenium Disulfide via High-Density Isopycnic Density Gradient Ultracentrifugation. <i>Nano Letters</i> , 2016 , 16, 7216-7223	11.5	44
316	Suppressing Ambient Degradation of Exfoliated InSe Nanosheet Devices via Seeded Atomic Layer Deposition Encapsulation. <i>Nano Letters</i> , 2018 , 18, 7876-7882	11.5	44
315	Impact of synthesis methods on the transport of single walled carbon nanotubes in the aquatic environment. <i>Environmental Science & Environmental Scie</i>	10.3	43
314	Nanofabrication of heteromolecular organic nanostructures on epitaxial graphene via room temperature feedback-controlled lithography. <i>Nano Letters</i> , 2011 , 11, 589-93	11.5	43
313	Conductive atomic force microscope nanopatterning of hydrogen-passivated silicon in inert organic solvents. <i>Nano Letters</i> , 2005 , 5, 91-5	11.5	43
312	Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials. <i>Microscopy Research and Technique</i> , 2004 , 64, 415-34	2.8	43
311	Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS van der Waals Heterojunction. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2484-2491	6.4	42
310	Atomic-level study of the robustness of the Si(100)-21:H surface following exposure to ambient conditions. <i>Applied Physics Letters</i> , 2001 , 78, 886-888	3.4	42
309	Diameter Refinement of Semiconducting Arc Discharge Single-Walled Carbon Nanotubes via Density Gradient Ultracentrifugation. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2805-2810	6.4	41
308	Low voltage, high performance inkjet printed carbon nanotube transistors with solution processed ZrO2 gate insulator. <i>Applied Physics Letters</i> , 2013 , 103, 082119	3.4	41
307	Syntheses, structures, physical properties, and theoretical studies of CeMxOS (M = Cu, Ag; x approximately 0.8) and CeAgOS. <i>Inorganic Chemistry</i> , 2006 , 45, 8264-72	5.1	41
306	Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer. <i>Nano Letters</i> , 2016 , 16, 4329-34	11.5	40
305	Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and E. coli. <i>ACS Nano</i> , 2016 , 10, 6008-19	16.7	40
304	Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs. <i>Nano Letters</i> , 2018 , 18, 2816-2821	11.5	39
303	Identifying and characterizing epitaxial graphene domains on partially graphitized SiC(0001) surfaces using scanning probe microscopy. <i>Applied Physics Letters</i> , 2010 , 96, 143103	3.4	39
302	High-Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers. <i>Small</i> , 2016 , 12, 294-300	11	39
301	Electronic Coupling in Metallophthalocyanine-Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions. <i>ACS Nano</i> , 2019 , 13, 4183-4190	16.7	38

300	Inorganic "Conductive Glass" Approach to Rendering Mesoporous Metal-Organic Frameworks Electronically Conductive and Chemically Responsive. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10, 30532-30540	9.5	38
299	Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001). <i>Applied Physics Letters</i> , 2014 , 105, 161602	3.4	38
298	Narrow diameter distributions of metallic arc discharge single-walled carbon nanotubes via dual-iteration density gradient ultracentrifugation. <i>Advanced Materials</i> , 2012 , 24, 4765-8	24	38
297	The polarized carbon nanotube thin film LED. Optics Express, 2010, 18, 25738-45	3.3	38
296	Quantifying desorption of saturated hydrocarbons from silicon with quantum calculations and scanning tunneling microscopy. <i>Physical Review Letters</i> , 2006 , 97, 187601	7.4	38
295	High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. <i>ACS Nano</i> , 2019 , 13, 9664-9672	16.7	37
294	Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance. <i>Chemistry of Materials</i> , 2016 , 28, 3928-3936	9.6	37
293	Self-Aligned van der Waals Heterojunction Diodes and Transistors. <i>Nano Letters</i> , 2018 , 18, 1421-1427	11.5	36
292	Templating sub-10 nm atomic layer deposited oxide nanostructures on graphene via one-dimensional organic self-assembled monolayers. <i>Nano Letters</i> , 2013 , 13, 5763-70	11.5	36
291	Dual-Gated MoS2 Memtransistor Crossbar Array. Advanced Functional Materials, 2020, 30, 2003683	15.6	36
290	Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy with Picosecond Excitation. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2657-61	6.4	35
289	Inkjet Printed Circuits on Flexible and Rigid Substrates Based on Ambipolar Carbon Nanotubes with High Operational Stability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27654-60	9.5	35
288	Ultrafast exciton dephasing in semiconducting single-walled carbon nanotubes. <i>Physical Review Letters</i> , 2008 , 101, 217402	7.4	35
287	Exciton decay dynamics in individual carbon nanotubes at room temperature. <i>Applied Physics Letters</i> , 2008 , 92, 153116	3.4	35
286	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having Extended Units with Broad Near-IR Absorption. <i>ACS Energy Letters</i> , 2021 , 6, 728-738	20.1	35
285	Systematic Merging of Nonfullerene Acceptor Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6123-61	39 ^{6.4}	34
284	Influence of functional groups on the degradation of graphene oxide nanomaterials. <i>Environmental Science: Nano</i> , 2019 , 6, 2203-2214	7.1	33
283	Bridge-enhanced nanoscale impedance microscopy. <i>Applied Physics Letters</i> , 2005 , 87, 233117	3.4	33

282	High-Efficiency Inverted Polymer Photovoltaics via Spectrally Tuned Absorption Enhancement. <i>Advanced Energy Materials</i> , 2014 , 4, 1301938	21.8	32
281	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24110-24115	13	32
280	Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna. <i>Optics Express</i> , 2010 , 18, 16443-51	3.3	32
279	Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes. <i>Journal of Chemical Physics</i> , 2011 , 134, 034504	3.9	32
278	Consequences of anode interfacial layer deletion. HCl-treated ITO in P3HT:PCBM-based bulk-heterojunction organic photovoltaic devices. <i>Langmuir</i> , 2010 , 26, 2584-91	4	32
277	Mechanism for Al2O3 Atomic Layer Deposition on LiMn2O4 from In Situ Measurements and Ab Initio Calculations. <i>CheM</i> , 2018 , 4, 2418-2435	16.2	32
276	Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors. <i>Scientific Reports</i> , 2017 , 7, 39627	4.9	31
275	Molecular-Orientation-Dependent Interfacial Charge Transfer in Phthalocyanine/MoS2 Mixed-Dimensional Heterojunctions. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 13337-13343	3.8	31
274	Voltage-Controlled Ring Oscillators Based on Inkjet Printed Carbon Nanotubes and Zinc Tin Oxide. <i>ACS Applied Materials & Discrete Mate</i>	9.5	31
273	Readily Accessible Benzo[d]thiazole Polymers for Nonfullerene Solar Cells with >16% Efficiency and Potential Pitfalls. <i>ACS Energy Letters</i> , 2020 , 5, 1780-1787	20.1	31
272	Shape-Dependent Relaxivity of Nanoparticle-Based Magnetic Resonance Imaging Contrast Agents. Journal of Physical Chemistry C, 2016 , 120, 22103-22109	3.8	31
271	"Supersaturated" self-assembled charge-selective interfacial layers for organic solar cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17762-73	16.4	31
270	High-field transport and thermal reliability of sorted carbon nanotube network devices. <i>ACS Nano</i> , 2013 , 7, 482-90	16.7	31
269	A scalable, CMOS-compatible assembly of ambipolar semiconducting single-walled carbon nanotube devices. <i>Advanced Materials</i> , 2011 , 23, 1734-8	24	31
268	Conductive atomic force microscope nanopatterning of epitaxial graphene on SiC(0001) in ambient conditions. <i>Advanced Materials</i> , 2011 , 23, 2181-4	24	31
267	Tuning of sorted double-walled carbon nanotubes by electrochemical charging. ACS Nano, 2010 , 4, 459	-69 6.7	31
266	Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes. <i>ChemPhysChem</i> , 2008 , 9, 1460-4	3.2	31
265	Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors. <i>Advanced Materials</i> , 2019 , 31, e1805082	24	31

264	Materials science: Semiconductors grown large and thin. <i>Nature</i> , 2015 , 520, 631-2	50.4	30
263	Emergent Optoelectronic Properties of Mixed-Dimensional Heterojunctions. <i>Accounts of Chemical Research</i> , 2020 , 53, 763-772	24.3	30
262	Enhanced Lithiation of Doped 6H Silicon Carbide (0001) via High Temperature Vacuum Growth of Epitaxial Graphene. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20949-20957	3.8	30
261	Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1577-1582	6.4	30
260	Charge Transport through Molecular Junctions. MRS Bulletin, 2004, 29, 385-390	3.2	30
259	Molecular electronics on silicon: an ultrahigh vacuum scanning tunneling microscopy study. <i>Annals of the New York Academy of Sciences</i> , 2003 , 1006, 227-34	6.5	30
258	Gate-Tunable Synaptic Dynamics of Ferroelectric-Coupled Carbon-Nanotube Transistors. <i>ACS Applied Materials & District Applied Materials & District Applied Materials & District Applied Materials & District Action (Control of Carbon (Control of</i>	9.5	30
257	Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. <i>Energy and Environmental Science</i> , 2020 , 13, 4114-4121	35.4	30
256	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. <i>Nature Materials</i> , 2021 , 20, 1142-1148	27	30
255	Solution-Processed Layered Gallium Telluride Thin-Film Photodetectors. ACS Photonics, 2018, 5, 3996-4	06.3	30
254	Solution-Processed Carbon Nanotube True Random Number Generator. <i>Nano Letters</i> , 2017 , 17, 4976-49	9 81 .5	29
253	Multiferroicity of carbon-based charge-transfer magnets. <i>Advanced Materials</i> , 2015 , 27, 734-9	24	28
252	Wiring up Liquid Metal: Stable and Robust Electrical Contacts Enabled by Printable Graphene Inks. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700483	6.4	28
251	Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18664-18669	16.4	28
250	Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy. <i>ACS Nano</i> , 2010 , 4, 5914-20	16.7	28
249	Copper(I)tert-Butylthiolato Clusters as Single-Source Precursors for High-Quality Chalcocite Thin Films: Film Growth and Microstructure Control. <i>Chemistry of Materials</i> , 2007 , 19, 2780-2785	9.6	28
248	Kinetics and Mechanism of Atomic Force Microscope Local Oxidation on Hydrogen-Passivated Silicon in Inert Organic Solvents. <i>Advanced Materials</i> , 2006 , 18, 1377-1380	24	28
247	Bromine functionalized molecular adlayers on hydrogen passivated silicon surfaces. <i>Chemical Physics</i> , 2006 , 326, 144-150	2.3	28

246	Capacitively Coupled Hybrid Ion Gel and Carbon Nanotube Thin-Film Transistors for Low Voltage Flexible Logic Circuits. <i>Advanced Functional Materials</i> , 2018 , 28, 1802610	15.6	28	
245	Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring. <i>2D Materials</i> , 2020 , 7, 034002	5.9	27	
244	Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18121-5	16.4	27	
243	Intensity-dependent exciton dynamics of (6,5) single-walled carbon nanotubes: momentum selection rules, diffusion, and nonlinear interactions. <i>ACS Nano</i> , 2011 , 5, 9898-906	16.7	27	
242	Noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes with platinum-based DNA cross-linkers. <i>Langmuir</i> , 2008 , 24, 9784-9	4	27	
241	Graphene-Metal-Organic Framework Composite Sulfur Electrodes for Li-S Batteries with High Volumetric Capacity. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2020 , 12, 37173-37181	9.5	27	
240	Sub-5 nm, globally aligned graphene nanoribbons on Ge(001). <i>Applied Physics Letters</i> , 2016 , 108, 213101	3.4	27	
239	Emerging Opportunities for Electrostatic Control in Atomically Thin Devices. ACS Nano, 2020, 14, 6498-6	5 5 đ. β	26	
238	Anhydrous Liquid-Phase Exfoliation of Pristine Electrochemically Active GeS Nanosheets. <i>Chemistry of Materials</i> , 2018 , 30, 2245-2250	9.6	26	
237	Ternary Polymer P erylenediimide T arbon Nanotube Photovoltaics with High Efficiency and Stability under Super-Solar Irradiation. <i>ACS Energy Letters</i> , 2016 , 1, 548-555	20.1	26	
236	Transfer Printing of Sub-5 th Graphene Electrodes for Flexible Microsupercapacitors. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	26	
235	Defect evolution in graphene upon electrochemical lithiation. <i>ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation. ACS Applied Materials & Defect evolution in graphene upon electrochemical lithiation electrochemical lithiation electrochemical lithiation electrochemical lithiation electrochemic</i>	9.5	26	
234	High-Sensitivity Acoustic Molecular Sensors Based on Large-Area, Spray-Coated 2D Covalent Organic Frameworks. <i>Advanced Materials</i> , 2020 , 32, e2004205	24	26	
233	Near-equilibrium growth from borophene edges on silver. <i>Science Advances</i> , 2019 , 5, eaax0246	14.3	25	
232	Spiking neurons from tunable Gaussian heterojunction transistors. <i>Nature Communications</i> , 2020 , 11, 1565	17.4	25	
231	Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries. <i>ACS Applied Materials & District Research</i> , 12, 8107-8114	9.5	25	
230	Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting. <i>Nano Letters</i> , 2016 , 16, 7370-7375	11.5	25	
229	Fluoropolymer coatings for improved carbon nanotube transistor device and circuit performance. Applied Physics Letters, 2014 , 105, 122107	3.4	25	

228	Phenylacetylene one-dimensional nanostructures on the Si(100)-2 x 1:H surface. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3013-9	16.4	25
227	Spatially-resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy. <i>Applied Physics Letters</i> , 2004 , 85, 344-346	3.4	25
226	Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 2021,	27	25
225	Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes. <i>ACS Nano</i> , 2017 , 11, 2992-3000	16.7	24
224	Chirality-Enriched Carbon Nanotubes for Next-Generation Computing. <i>Advanced Materials</i> , 2020 , 32, e1905654	24	24
223	Mechanisms of Gadographene-Mediated Proton Spin Relaxation. <i>Journal of Physical Chemistry C</i> , 2013 , 117,	3.8	24
222	Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices. <i>ACS Nano</i> , 2012 , 6, 7303-10	16.7	24
221	Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes. <i>Nano Letters</i> , 2012 , 12, 813-9	11.5	24
220	Translocation of single-wall carbon nanotubes through solid-state nanopores. <i>Nano Letters</i> , 2011 , 11, 2446-50	11.5	24
219	Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization. <i>Small</i> , 2009 , 5, 2807-11	11	24
218	Microscale features and surface chemical functionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication. <i>Langmuir</i> , 2006 , 22, 6712-8	4	24
217	Imaging of atomic layer deposited (ALD) tungsten monolayers on alpha-TiO2(110) by X-ray standing wave Fourier inversion. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12616-20	3.4	24
216	Implementation of Interdisciplinary Group Learning and Peer Assessment in a Nanotechnology Engineering Course. <i>Journal of Engineering Education</i> , 2004 , 93, 49-57	2.3	24
215	Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe Single Crystals. <i>Advanced Materials</i> , 2018 , 30, e1804925	24	24
214	Charge Separation at Mixed-Dimensional Single and Multilayer MoS/Silicon Nanowire Heterojunctions. <i>ACS Applied Materials & Date:</i> Interfaces, 2018 , 10, 16760-16767	9.5	23
213	Nanotechnology Education for the Global World: Training the Leaders of Tomorrow. <i>ACS Nano</i> , 2016 , 10, 5595-9	16.7	23
212	Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures. <i>Applied Physics Letters</i> , 2014 , 104, 062101	3.4	23
211	Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type. <i>Chemistry - A European Journal</i> , 2011 , 17, 9806-15	4.8	23

(2013-2005)

210	Structural Modifications to Polystyrene via Self-Assembling Molecules. <i>Advanced Functional Materials</i> , 2005 , 15, 487-493	15.6	23	
209	Variable temperature study of the passivation of dangling bonds at Si(100)-2¶ reconstructed surfaces with H and D. <i>Applied Physics Letters</i> , 2002 , 80, 201-203	3.4	23	
208	Origin of Fracture-Resistance to Large Volume Change in Cu-Substituted Co O Electrodes. Advanced Materials, 2018 , 30, 1704851	24	23	
207	Correlated In Situ Low-Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non-Fullerene Acceptors. <i>Advanced Functional Materials</i> , 2017 , 27, 1703805	15.6	22	
200	Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation. <i>ACS Applied Materials & District Amp; Interfaces</i> , 2016 , 8, 19979-86	9.5	22	
20	Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20966-72	3.6	22	
202	Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Applied Physics Letters, 2014 , 104, 083503	3.4	22	
203	In Situ Raman Spectroelectrochemistry of Single-Walled Carbon Nanotubes: Investigation of Materials Enriched with (6,5) Tubes. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14179-14187	3.8	22	
202	Nanoscale impedance microscopy-a characterization tool for nanoelectronic devices and circuits. <i>IEEE Nanotechnology Magazine</i> , 2005 , 4, 255-259	2.6	22	
2 01	An azanorbornadiene anchor for molecular-level construction on silicon(100). <i>Nanotechnology</i> , 2004 , 15, 324-332	3.4	22	
200	Revealing the Effects of Electrode Crystallographic Orientation on Battery Electrochemistry via the Anisotropic Lithiation and Sodiation of ReS. <i>ACS Nano</i> , 2018 , 12, 7875-7882	16.7	21	
199	High aspect ratio nanotubes assembled from macrocyclic iminium salts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8883-8888	11.5	21	
198	Self-Assembled Nanodielectrics for High-Speed, Low-Voltage Solution-Processed Polymer Logic Circuits. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500226	6.4	21	
197	Nitroxyl free radical binding to Si(100): a combined scanning tunneling microscopy and computational modeling study. <i>Surface Science</i> , 2004 , 559, 16-28	1.8	21	
196	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. <i>Nano Today</i> , 2021 , 37, 101061-101061	17.9	21	
195	Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. <i>ACS Applied Materials & Description (Materials & Description (Materials & Description)</i> Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. <i>ACS Applied Materials & Description (Materials & Description)</i> Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. <i>ACS Applied Materials & Description)</i> Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. <i>ACS Applied Materials & Description)</i> Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. <i>ACS Applied Materials & Description)</i> Understanding Control (Materials & Description)	9.5	20	
194	Borophene Concentric Superlattices via Self-Assembly of Twin Boundaries. <i>Nano Letters</i> , 2020 , 20, 131	5-11:33:1	20	
193	Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis. <i>Applied Physics Letters</i> , 2013 , 102, 193111	3.4	20	

192	Reproducible lateral force microscopy measurements for quantitative comparisons of the frictional and chemical properties of nanostructures. <i>Ultramicroscopy</i> , 2004 , 99, 189-96	3.1	20
191	Polymorphism in Post-Dichalcogenide Two-Dimensional Materials. <i>Chemical Reviews</i> , 2021 , 121, 2713-2	7 68 .1	20
190	Atomic Layer Deposition of Molybdenum Oxides with Tunable Stoichiometry Enables Controllable Doping of MoS2. <i>Chemistry of Materials</i> , 2018 , 30, 3628-3632	9.6	20
189	Low-Frequency Carrier Kinetics in Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 14166-14174	9.5	19
188	Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics. <i>ACS Nano</i> , 2020 , 14, 3969-3979	16.7	19
187	Ion-Conductive, Viscosity-Tunable Hexagonal Boron Nitride Nanosheet Inks. <i>Advanced Functional Materials</i> , 2019 , 29, 1902245	15.6	19
186	Probing the Structure and Chemistry of Perylenetetracarboxylic Dianhydride on Graphene Before and After Atomic Layer Deposition of Alumina. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1974-1979	6.4	19
185	Probing and Tailoring pH-Dependent Interactions between Block Copolymers and Single-Walled Carbon Nanotubes for Density Gradient Sorting. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20103-2010	8 ^{3.8}	19
184	Towards Rationally Designed Graphene-Based Materials and Devices. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1091-1100	2.6	19
183	Orthogonal self-assembly of interconnected one-dimensional inorganic and organic nanostructures on the Si(100) surface. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12896-7	16.4	19
182	Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2007864	24	19
181	Tunable Crystallinity and Charge Transfer in Two-Dimensional G-Quadruplex Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3985-3989	16.4	18
180	Valley-selective optical Stark effect probed by Kerr rotation. <i>Physical Review B</i> , 2018 , 97,	3.3	18
179	Toxicological Profiling of Highly Purified Single-Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and Escherichia Coli. <i>Small</i> , 2018 , 14, e1703915	11	18
178	Plasmon-Mediated Electron Transport in Tip-Enhanced Raman Spectroscopic Junctions. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4210-8	6.4	17
177	Enhanced Uniformity and Area Scaling in Carbon Nanotube Bullerene Bulk-Heterojunction Solar Cells Enabled by Solvent Additives. <i>Advanced Energy Materials</i> , 2016 , 6, 1501466	21.8	17
176	Self-Assembled Two-Dimensional Heteromolecular Nanoporous Molecular Arrays on Epitaxial Graphene. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 270-4	6.4	17
175	Carbon Nanotubes in Thin-Film Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601205	21.8	17

(2010-2017)

174	Control of interlayer physics in 2H transition metal dichalcogenides. <i>Journal of Applied Physics</i> , 2017 , 122, 224302	2.5	17	
173	High aspect ratio nanoneedle probes with an integrated electrode at the tip apex. <i>Review of Scientific Instruments</i> , 2012 , 83, 113704	1.7	17	
172	Conductive Scanning Probe Characterization and Nanopatterning of Electronic and Energy Materials. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 7953-7963	3.8	17	
171	Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition. <i>Electrochemistry Communications</i> , 2010 , 12, 1543-1546	5.1	17	
170	Structural characterization of 4-bromostyrene self-assembled monolayers on si(111). <i>Langmuir</i> , 2007 , 23, 1905-11	4	17	
169	Controlled Nanoscale Morphology of Hematite (0001) Surfaces Grown by Chemical Vapor Transport. <i>Advanced Materials</i> , 2005 , 17, 1765-1768	24	17	
168	Reducing flicker noise in chemical vapor deposition graphene field-effect transistors. <i>Applied Physics Letters</i> , 2016 , 108, 073108	3.4	17	
167	Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 9947-9954	9.5	17	
166	Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration. <i>Nature Communications</i> , 2018 , 9, 4095	17.4	17	
165	Solution-processed graphene materials and composites. <i>MRS Bulletin</i> , 2012 , 37, 1167-1175	3.2	16	
164	Centrifugal shape sorting and optical response of polyhedral gold nanoparticles. <i>Advanced Materials</i> , 2013 , 25, 4023-7	24	16	
163	Probing structural stability of double-walled carbon nanotubes at high non-hydrostatic pressure by Raman spectroscopy. <i>High Pressure Research</i> , 2011 , 31, 186-190	1.6	16	
162	Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2243-2246	1.3	16	
161	High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes. <i>Applied Physics Letters</i> , 2016 , 108, 233105	3.4	16	
160	Defects at the Two-Dimensional Limit. Journal of Physical Chemistry Letters, 2015, 6, 2738-9	6.4	15	
159	Concurrently Approaching Volumetric and Specific Capacity Limits of Lithium Battery Cathodes via Conformal Pickering Emulsion Graphene Coatings. <i>Advanced Energy Materials</i> , 2020 , 10, 2001216	21.8	15	
158	Short Channel Field-Effect-Transistors with Inkjet-Printed Semiconducting Carbon Nanotubes. <i>Small</i> , 2015 , 11, 5505-9	11	15	
157	Building conjugated organic structures on Si(111) surfaces via microwave-assisted Sonogashira coupling. <i>Langmuir</i> , 2010 , 26, 3771-3	4	15	

156	Syntheses, crystal structures, and physical properties of La5Cu6O4S7 and La5Cu6.33O4S7. <i>Inorganic Chemistry</i> , 2008 , 47, 4368-74	5.1	15
155	Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 493-499	6.4	15
154	Antifouling properties of two-dimensional molybdenum disulfide and graphene oxide. <i>Environmental Science: Nano</i> , 2018 , 5, 1628-1639	7.1	15
153	GrapheneBilicon Heterostructures at the Two-Dimensional Limit. <i>Chemistry of Materials</i> , 2015 , 27, 6085	-6090	14
152	Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. <i>Environmental Engineering Science</i> , 2015 , 32, 163-173	2	14
151	Complementary D Flip-Flops Based on Inkjet Printed Single-Walled Carbon Nanotubes and Zinc Tin Oxide. <i>IEEE Electron Device Letters</i> , 2014 , 35, 1245-1247	4.4	14
150	Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds. <i>Small</i> , 2012 , 8, 1840-5	11	14
149	Additive manufacturing and applications of nanomaterial-based sensors. <i>Materials Today</i> , 2021 , 48, 135	-135	14
148	Ultrahigh Vacuum Self-Assembly of Rotationally Commensurate C8-BTBT/MoS2/Graphene Mixed-Dimensional Heterostructures. <i>Chemistry of Materials</i> , 2019 , 31, 1761-1766	9.6	13
147	Extrinsic polarization-controlled optical anisotropy in plasmon-black phosphorus coupled system. <i>Nanotechnology</i> , 2018 , 29, 285202	3.4	13
146	Tunable Radiation Response in Hybrid Organic-Inorganic Gate Dielectrics for Low-Voltage Graphene Electronics. <i>ACS Applied Materials & Dielectronics</i> , 2016 , 8, 5058-64	9.5	13
145	Influence of electronic type purity on the lithiation of single-walled carbon nanotubes. <i>ACS Nano</i> , 2014 , 8, 2399-409	16.7	13
144	Aqueous-Phase Oxidation of Epitaxial Graphene on the Silicon Face of SiC(0001). <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1014-1020	3.8	13
143	Charge-transfer induced magnetic field effects of nano-carbon heterojunctions. <i>Scientific Reports</i> , 2014 , 4, 6126	4.9	13
142	Scanning tunneling microscopy study of one-dimensional o-phthalaldehyde chain reactions on the Si(100)-2 x 1:H surface. <i>Chemical Communications</i> , 2010 , 46, 1153-5	5.8	13
141	Epitaxial graphene-encapsulated surface reconstruction of Ge(110). <i>Physical Review Materials</i> , 2018 , 2,	3.2	13
140	An Evaluation of the Efficacy and Transferability of a Nanoscience Module. <i>Journal of Nano Education (Print)</i> , 2009 , 1, 8-14		13
139	High Volumetric Energy and Power Density Li2TiSiO5 Battery Anodes via Graphene Functionalization. <i>Matter</i> , 2020 , 3, 522-533	12.7	13

(2001-2020)

138	Nanocomposite Ionogel Electrolytes for Solid-State Rechargeable Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002135	21.8	13	
137	Tunable Broad Light Emission from 3D "Hollow" Bromide Perovskites through Defect Engineering. Journal of the American Chemical Society, 2021 , 143, 7069-7080	16.4	13	
136	Light-Triggered Switching of Quantum Dot Photoluminescence through Excited-State Electron Transfer to Surface-Bound Photochromic Molecules. <i>Nano Letters</i> , 2021 , 21, 854-860	11.5	13	
135	Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. <i>Chemistry of Materials</i> , 2017 , 29, 4008-4013	9.6	12	
134	Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures. <i>ACS Nano</i> , 2020 , 14, 3509-3518	16.7	12	
133	All-Electrical Determination of Crystal Orientation in Anisotropic Two-Dimensional Materials. <i>Physical Review Letters</i> , 2018 , 120, 086801	7.4	12	
132	Tailoring the Porosity and Microstructure of Printed Graphene Electrodes via Polymer Phase Inversion. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13745-13750	3.8	12	
131	Solution-Processed Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. <i>ACS Applied Materials & District Self-Assembled Naterials & District Self-Assembled Naterials & District Self-Assembled Naterials & District Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. <i>ACS Applied Materials & District Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. ACS Applied Materials & District Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. <i>ACS Applied Materials & District Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. ACS Applied Materials & District Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. <i>ACS Applied Materials & District Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. ACS Applied Materials & District Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. ACS Applied Materials & District Self-Assembled Nanodielectrics on Template Self-Assembled N</i></i></i></i>	9.5	12	
130	Characterization and nanopatterning of organically functionalized graphene with ultrahigh vacuum scanning tunneling microscopy. <i>MRS Bulletin</i> , 2011 , 36, 532-542	3.2	12	
129	Nanoscale Writing of Transparent Conducting Oxide Features with a Focused Ion Beam. <i>Advanced Materials</i> , 2009 , 21, 721-725	24	12	
128	In Situ, Atomic-Resolution Observation of Lithiation and Sodiation of WS Nanoflakes: Implications for Lithium-Ion and Sodium-Ion Batteries. <i>Small</i> , 2021 , 17, e2100637	11	12	
127	Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors. <i>Applied Physics Letters</i> , 2017 , 110, 073102	3.4	11	
126	Application of external voltage for fouling mitigation from graphene oxide, reduced graphene oxide and molybdenum disulfide functionalized surfaces. <i>Environmental Science: Nano</i> , 2019 , 6, 925-936	7.1	11	
125	Direct Printing of Graphene Electrodes for High-Performance Organic Inverters. <i>ACS Applied Materials & ACS Applied</i>	9.5	11	
124	Self-assembled organic monolayers on epitaxial graphene with enhanced structural and thermal stability. <i>Chemical Communications</i> , 2014 , 50, 8852-5	5.8	11	
123	Near-field microwave microscopy of high-Loxides grown on graphene with an organic seeding layer. <i>Applied Physics Letters</i> , 2013 , 103, 243105	3.4	11	
122	Ultra-high vacuum scanning tunnelling microscopy investigation of free radical adsorption to the Si(111)-7 🗗 surface. <i>Nanotechnology</i> , 2007 , 18, 044011	3.4	11	
121	Adhesive and mechanical properties of soft nanocomposites: Model studies with blended latex films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 3090-3102	2.6	11	

120	Silicon-Phosphorene Nanocavity-Enhanced Optical Emission at Telecommunications Wavelengths. <i>Nano Letters</i> , 2018 , 18, 6515-6520	11.5	11
119	Self-Assembled Photochromic Molecular Dipoles for High-Performance Polymer Thin-Film Transistors. <i>ACS Applied Materials & Dipoles</i> , Interfaces, 2018 , 10, 21492-21498	9.5	11
118	Angstrom-Scale Spectroscopic Visualization of Interfacial Interactions in an Organic/Borophene Vertical Heterostructure. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15624-15634	16.4	11
117	Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media. <i>Molecular Systems Design and Engineering</i> , 2019 , 4, 491-502	4.6	10
116	Hierarchical nanoparticle morphology for platinum supported on SrTiO3 (0 0 1): A combined microscopy and X-ray scattering study. <i>Applied Surface Science</i> , 2009 , 256, 423-427	6.7	10
115	Probing Surface-Adlayer Conjugation on Organic-Modified Si(111) Surfaces with Microscopy, Scattering, Spectroscopy, and Density Functional Theory. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 291	1 3 :292	7 ¹⁰
114	Elucidating and Mitigating High-Voltage Degradation Cascades in Cobalt-Free LiNiO Lithium-Ion Battery Cathodes. <i>Advanced Materials</i> , 2021 , e2106402	24	10
113	Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non-Fullerene Organic Solar Cells. <i>Advanced Energy Materials</i> ,21021	72 ^{1.8}	10
112	Nanoscale structure, composition, and charge transport analysis of transparent conducting oxide nanowires written by focused ion beam implantation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7347-54	16.4	9
111	Ambient AFM nanoscale oxidation of hydrogen-passivated silicon with conductive-diamond-coated probes. <i>Small</i> , 2007 , 3, 2053-6	11	9
110	An approach for efficiently locating and electrically contacting nanostructures fabricated via UHV-STM lithography on Si(100). <i>Microelectronic Engineering</i> , 1999 , 47, 235-237	2.5	9
109	Sodium-Doped Titania Self-Rectifying Memristor for Crossbar Array Neuromorphic Architectures. <i>Advanced Materials</i> , 2021 , e2106913	24	9
108	Influence of Indium Tin Oxide Surface Treatment on Spatially Localized Photocurrent Variations in Bulk Heterojunction Organic Photovoltaic Devices. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22688-22	6 3 98	8
107	Control and characterization of cyclopentene unimolecular dissociation on Si(100) with scanning tunneling microscopy. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10059-65	16.4	8
106	Monitoring interface traps in operating organic light-emitting diodes using impedance spectroscopy. <i>Thin Solid Films</i> , 2007 , 515, 4783-4787	2.2	8
105	Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. <i>Energy and Environmental Science</i> ,	35.4	8
104	Optothermally Reversible Carbon Nanotube-DNA Supramolecular Hybrid Hydrogels. <i>Macromolecular Rapid Communications</i> , 2018 , 39, 1700587	4.8	8
103	Hot spot dynamics in carbon nanotube array devices. <i>Nano Letters</i> , 2015 , 15, 2127-31	11.5	7

(2008-2018)

102	Tunable Crystallinity and Charge Transfer in Two-Dimensional G-Quadruplex Organic Frameworks. <i>Angewandte Chemie</i> , 2018 , 130, 4049-4053	3.6	7	
101	Operational Regimes in Picosecond and Femtosecond Pulse-Excited Ultrahigh Vacuum SERS. Journal of Physical Chemistry Letters, 2016 , 7, 2971-6	6.4	7	
100	Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4223-4229	6.4	7	
99	Self-aligned capillarity-assisted printing of top-gate thin-film transistors on plastic. <i>Flexible and Printed Electronics</i> , 2018 , 3, 035004	3.1	7	
98	Centrifugal Shape Sorting of Faceted Gold Nanoparticles Using an Atomic Plane-Selective Surfactant. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1484-7	6.4	7	
97	Implications of atomic-level manipulation on the Si(100) surface: From enhanced CMOS reliability to molecular nanoelectronics. <i>Superlattices and Microstructures</i> , 2000 , 27, 583-591	2.8	7	
96	Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems. <i>Advanced Materials</i> , 2021 , e2108025	24	7	
95	Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7	
94	Reconfigurable MoS Memtransistors for Continuous Learning in Spiking Neural Networks. <i>Nano Letters</i> , 2021 , 21, 6432-6440	11.5	7	
93	Enhancement of minority carrier injection in ambipolar carbon nanotube transistors using double-gate structures. <i>Applied Physics Letters</i> , 2016 , 109, 023515	3.4	7	
92	Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with gain bandwidth product exceeding 1 GHz. <i>Nano Research</i> , 2021 , 14, 1961-1966	10	7	
91	Nanoscale Probing of Image-Potential States and Electron Transfer Doping in Borophene Polymorphs. <i>Nano Letters</i> , 2021 , 21, 1169-1174	11.5	7	
90	Density-Gradient Control over Nanoparticle Supercrystal Formation. <i>Nano Letters</i> , 2018 , 18, 6022-6029	11.5	6	
89	Electron dynamics of the buffer layer and bilayer graphene on SiC. <i>Applied Physics Letters</i> , 2014 , 104, 231604	3.4	6	
88	Insights into graphene functionalization by single atom doping. <i>Nanotechnology</i> , 2013 , 24, 505715	3.4	6	
87	Extrinsic and intrinsic photoresponse in monodisperse carbon nanotube thin film transistors. <i>Applied Physics Letters</i> , 2013 , 102, 083104	3.4	6	
86	Thermally induced nanoscale structural and morphological changes for atomic-layer-deposited Pt on SrTiO3(001). <i>Journal of Applied Physics</i> , 2011 , 110, 102202	2.5	6	
85	Atomically resolved charge redistribution for Ga nanocluster arrays on the Si(111)-7 x 7 surface. <i>Small</i> , 2008 , 4, 915-9	11	6	

84	Adhesive transfer of thin viscoelastic films. <i>Langmuir</i> , 2005 , 21, 178-86	4	6
83	Observation of current-induced switching in non-collinear antiferromagnetic IrMn by differential voltage measurements. <i>Nature Communications</i> , 2021 , 12, 3828	17.4	6
82	Ambient-Stable Two-Dimensional CrI Organic-Inorganic Encapsulation. ACS Nano, 2021, 15, 10659-1066	7 16.7	6
81	Printable hexagonal boron nitride ionogels. <i>Faraday Discussions</i> , 2021 , 227, 92-104	3.6	6
8o	Non-Iridescent Structural Color Control via Inkjet Printing of Self-Assembled Synthetic Melanin Nanoparticles. <i>Chemistry of Materials</i> , 2021 , 33, 6433-6442	9.6	6
79	Amino Acid Immobilization of Copper Surface Diffusion on Cu(111). <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900021	4.6	5
78	Inkjet printed carbon nanotubes in short channel field effect transistors: influence of nanotube distortion and gate insulator interface modification. <i>Flexible and Printed Electronics</i> , 2016 , 1, 035001	3.1	5
77	Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 3966-3971	6.4	5
76	Response to comment on "Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment". <i>Environmental Science & Environmental Science & Envir</i>	10.3	5
75	Towards quantification of the ratio of the single and double wall carbon nanotubes in their mixtures: An in situ Raman spectroelectrochemical study. <i>Carbon</i> , 2014 , 78, 366-373	10.4	5
74	Subnanometer Imaging of Adsorbate-Induced Electronic Structure Perturbation on Silicon Surfaces. Journal of Physical Chemistry C, 2008 , 112, 2116-2120	3.8	5
73	Probing individual nanoscale organic light-emitting diodes with atomic force electroluminescence microscopy and bridge-enhanced nanoscale impedance microscopy. <i>Organic Electronics</i> , 2007 , 8, 465-47	<i>3</i> ·5	5
72	In-situ Vis/NIR spectroelectrochemistry of single-walled carbon nanotubes enriched with (6,5) tubes. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2239-2242	1.3	5
71	Detecting elusive surface atoms with atomic force microscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 12531-2	11.5	5
70	Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab on A Chip, 2021,	7.2	5
69	Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 063210	2.9	5
68	Charge generation mechanism tuned via film morphology in small molecule bulk-heterojunction photovoltaic materials. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15234-15252	7.1	5
67	Driving chemical interactions at graphene-germanium van der Waals interfaces via thermal annealing. <i>Applied Physics Letters</i> , 2018 , 113, 213103	3.4	5

(2011-2015)

66	Selective Crystal Growth and Structural, Optical, and Electronic Studies of Mn3Ta2O8. <i>Inorganic Chemistry</i> , 2015 , 54, 6513-9	5.1	4	
65	Real-Time Optical Process Monitoring for Structure and Property Control of Aerosol Jet Printed Functional Materials. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000781	6.8	4	
64	Pressure-driven water transport behavior and antifouling performance of two-dimensional nanomaterial laminated membranes. <i>Journal of Membrane Science</i> , 2020 , 599, 117812	9.6	4	
63	Measuring Dipole Inversion in Self-Assembled Nano-Dielectric Molecular Layers. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 6484-6490	9.5	4	
62	Gate-tunable memristors from monolayer MoS2 2017 ,		4	
61	Photoluminescence from disorder induced states in individual single-walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2679-2682	1.3	4	
60	Ultrasensitive Molecular Sensors Based on Real-Time Impedance Spectroscopy in Solution-Processed 2D Materials. <i>Advanced Functional Materials</i> ,2106830	15.6	4	
59	Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Non-Toxic 2D Boron Nitride Effects. <i>Small</i> , 2021 , 17, e2101084	11	4	
58	Leveraging Molecular Properties to Tailor Mixed-Dimensional Heterostructures beyond Energy Level Alignment. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4543-4557	6.4	4	
57	Thickness-dependent charge transport in exfoliated indium selenide vertical field-effect transistors. <i>Applied Physics Letters</i> , 2019 , 115, 243104	3.4	4	
56	Selective Transfer of Rotationally Commensurate MoS2 from an Epitaxially Grown van der Waals Heterostructure. <i>Chemistry of Materials</i> , 2018 , 30, 8495-8500	9.6	4	
55	Ohmic-Contact-Gated Carbon Nanotube Transistors for High-Performance Analog Amplifiers. <i>Advanced Materials</i> , 2021 , 33, e2100994	24	4	
54	An inkjet printed piezoresistive back-to-back graphene tactile sensor for endosurgical palpation applications 2017 ,		3	
53	Nanoscience and Nanotechnology Cross Borders. <i>ACS Nano</i> , 2017 , 11, 1123-1126	16.7	3	
52	An Inkjet Printing Technique for Scalable Microfabrication of Graphene-Based Sensor Components. <i>IEEE Access</i> , 2020 , 8, 79338-79346	3.5	3	
51	Lithium Electrochemistry of WS2 Nanoflakes Studied by In-situ TEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1860-1861	0.5	3	
50	Measuring single-wall carbon nanotubes with solid-state nanopores. <i>Methods in Molecular Biology</i> , 2012 , 870, 227-39	1.4	3	
49	Large-scale, nonsubtractive patterning of transparent conducting oxides by ion bombardment. <i>Applied Physics Letters</i> , 2011 , 99, 022110	3.4	3	

48	Monitoring and analyzing nonlinear dynamics in atomic force microscopy. Small, 2006, 2, 1122-4	11	3
47	Combustion-Assisted Photonic Sintering of Printed Liquid Metal Nanoparticle Films. <i>Advanced Materials Technologies</i> ,2101178	6.8	3
46	Aggregation morphology of planar engineered nanomaterials. <i>Journal of Colloid and Interface Science</i> , 2020 , 561, 849-853	9.3	3
45	Large-area optoelectronic-grade InSe thin films via controlled phase evolution. <i>Applied Physics Reviews</i> , 2020 , 7, 041402	17.3	3
44	Self-Assembled Borophene/Graphene Nanoribbon Mixed-Dimensional Heterostructures. <i>Nano Letters</i> , 2021 , 21, 4029-4035	11.5	3
43	Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. <i>Nature Communications</i> , 2021 , 12, 4530	17.4	3
42	Graphene Ink as a Conductive Templating Interlayer for Enhanced Charge Transport of C-Based Devices. <i>ACS Applied Materials & Enhanced Charge Transport of C-Based Devices</i> . <i>ACS Applied Materials & Enhanced Charge Transport of C-Based Devices</i> . <i>ACS Applied Materials & Enhanced Charge Transport of C-Based Devices</i> . <i>ACS Applied Materials & Enhanced Charge Transport of C-Based Devices</i> . <i>ACS Applied Materials & Enhanced Charge Transport of C-Based Devices</i> .	9.5	3
41	Tailoring the Optical Response of Pentacene Thin Films via Templated Growth on Hexagonal Boron Nitride. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 26-31	6.4	3
40	Morphology and electrical properties of high-speed flexography-printed graphene <i>Mikrochimica Acta</i> , 2022 , 189, 123	5.8	3
39	Edge states in the honeycomb reconstruction of two-dimensional silicon nanosheets. <i>Applied Physics Letters</i> , 2019 , 115, 023102	3.4	2
38	Preface to Special Topic: Two-Dimensional Materials. APL Materials, 2014, 2, 092201	5.7	2
37	Room temperature molecular resolution nanopatterning of cyclopentene monolayers on Si(100) via feedback controlled lithography. <i>Applied Physics Letters</i> , 2013 , 102, 243106	3.4	2
36	Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17153-17161	16.4	2
35	n-Doping of Quantum Dots by Lithium Ion Intercalation. <i>ACS Applied Materials & Document Communication</i> , 12, 36523-36529	9.5	2
34	Elucidating Charge Transport Mechanisms in Cellulose-Stabilized Graphene Inks. <i>Journal of Materials Chemistry C</i> , 2020 , 8,	7.1	2
33	Carbon Nanotubes: Enhanced Uniformity and Area Scaling in Carbon Nanotube H ullerene Bulk-Heterojunction Solar Cells Enabled by Solvent Additives (Adv. Energy Mater. 2/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	2
32	Transistors: Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics (Adv. Mater. 1/2016). <i>Advanced Materials</i> , 2016 , 28, 203-203	24	2
31	2D materials production and generation of functional inks: general discussion. <i>Faraday Discussions</i> , 2021 , 227, 141-162	3.6	2

30	Atomic-level charge transport mechanism in gate-tunable anti-ambipolar van der Waals heterojunctions. <i>Applied Physics Letters</i> , 2021 , 118, 083103	3.4	2
29	Anisotropic Lithiation and Sodiation of ReS2 Studied by In-situ TEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1570-1571	0.5	2
28	Lithium-Ion Batteries: Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe2 Single Crystals (Adv. Mater. 51/2018). <i>Advanced Materials</i> , 2018 , 30, 1870393	24	2
27	Elucidating and Mitigating High-Voltage Interfacial Chemomechanical Degradation of Nickel-Rich Lithium-Ion Battery Cathodes via Conformal Graphene Coating. <i>ACS Applied Energy Materials</i> ,	6.1	2
26	Visualizing Thermally Activated Memristive Switching in Percolating Networks of Solution-Processed 2D Semiconductors. <i>Advanced Functional Materials</i> ,2107385	15.6	2
25	Blade-Coatable Hexagonal Boron Nitride Ionogel Electrolytes for Scalable Production of Lithium Metal Batteries. <i>ACS Energy Letters</i> , 2022 , 7, 1558-1565	20.1	2
24	Ingrained: An Automated Framework for Fusing Atomic-Scale Image Simulations into Experiments <i>Small</i> , 2022 , e2102960	11	2
23	Prof. Millie Dresselhaus (1930-2017), Carbon Nanomaterials Pioneer. ACS Nano, 2017, 11, 2307-2308	16.7	1
22	Artificial Neural Networks: Dual-Gated MoS2 Memtransistor Crossbar Array (Adv. Funct. Mater. 45/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070297	15.6	1
21	Broad-Spectral-Response Nanocarbon Bulk-Heterojunction Excitonic Photodetectors (Adv. Mater. 25/2013). <i>Advanced Materials</i> , 2013 , 25, 3432-3432	24	1
20	Progress towards monodisperse single-walled carbon nanotubes 2009 , 3-10		1
19	PolymerIhorganic Nanocomposites from Si-Based Substrates: Applications of Ring-Opening Metathesis Polymerization. <i>ACS Symposium Series</i> , 2008 , 303-321	0.4	1
18	Optical absorption and transient photobleaching in solutions of surfactant-encapsulated and DNA-wrapped single-walled carbon nanotubes 2004 , 5359, 376		1
17	Amorphous to Crystal Phase Change Memory Effect with Two-Fold Bandgap Difference in Semiconducting KBiSe. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6221-6228	16.4	1
16	Anisotropic thermal conductivity of layered indium selenide. <i>Applied Physics Letters</i> , 2021 , 118, 073101	3.4	1
15	Abrupt Thermal Shock of (NH)MoS Leads to Ultrafast Synthesis of Porous Ensembles of MoS Nanocrystals for High Gain Photodetectors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 38193-383	286	1
14	Mechanism of Long-Range Energy Transfer from Quantum Dots to Black Phosphorus. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 15458-15464	3.8	1
13	Thermoreflectance Imaging of (Ultra)wide Band-Gap Devices with MoS Enhancement Coatings. <i>ACS Applied Materials & Devices & De</i>	9.5	1

12	Accelerated Decomposition Kinetics of Ammonium Perchlorate via Conformal Graphene Coating. <i>Chemistry of Materials</i> , 2021 , 33, 9608-9617	9.6	1
11	Molecular Engineering of 2D Nanomaterial Field-Effect Transistor Sensors: Fundamentals and Translation across the Innovation Spectrum <i>Advanced Materials</i> , 2021 , e2106975	24	O
10	Immobilized Cu Adatoms: Amino Acid Immobilization of Copper Surface Diffusion on Cu(111) (Adv. Mater. Interfaces 7/2019). <i>Advanced Materials Interfaces</i> , 2019 , 6, 1970043	4.6	
9	Charge-Transfer Magnets: Multiferroicity of Carbon-Based Charge-Transfer Magnets (Adv. Mater. 4/2015). <i>Advanced Materials</i> , 2015 , 27, 733-733	24	
8	Applications: High-Performance Materials and Emerging Areas 2011 , 467-499		
7	Nanoscale Control of Friction and Chemistry on Silicon Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 750, 1		
6	Elucidating and Mitigating High-Voltage Degradation Cascades in Cobalt-Free LiNiO 2 Lithium-Ion Battery Cathodes (Adv. Mater. 3/2022). <i>Advanced Materials</i> , 2022 , 34, 2270026	24	
5	Lithium-Ion Batteries: Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries (Adv. Mater. 13/2021). <i>Advanced Materials</i> , 2021 , 33, 2170099	24	
4	Lithium/Sodium-Ion Batteries: In Situ, Atomic-Resolution Observation of Lithiation and Sodiation of WS2 Nanoflakes: Implications for Lithium-Ion and Sodium-Ion Batteries (Small 24/2021). <i>Small</i> , 2021 , 17, 2170120	11	
3	Toward Rationally Designed Graphene-Based Materials and Devices 2016 , 53-67		
2	Fully printed and flexible multi-material electrochemical aptasensor platform enabled by selective graphene biofunctionalization. <i>Engineering Research Express</i> , 2022 , 4, 015037	0.9	
1	Ultrasensitive Molecular Sensors Based on Real-Time Impedance Spectroscopy in Solution-Processed 2D Materials (Adv. Funct. Mater. 12/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270076	15.6	