Jim Luong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9153936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive two dimensional gas chromatography review. Journal of Separation Science, 2009, 32, 883-904.	1.3	158
2	Developments in stationary phase technology for gas chromatography. TrAC - Trends in Analytical Chemistry, 2002, 21, 594-607.	5.8	57
3	Thermal Independent Modulator for Comprehensive Two-Dimensional Gas Chromatography. Analytical Chemistry, 2016, 88, 8428-8432.	3.2	45
4	Low Thermal Mass Gas Chromatography: Principles and Applications. Journal of Chromatographic Science, 2006, 44, 253-261.	0.7	44
5	Thermal Modulation for Multidimensional Liquid Chromatography Separations Using Low-Thermal-Mass Liquid Chromatography (LC). Analytical Chemistry, 2011, 83, 7053-7060.	3.2	43
6	Gas Chromatographic Applications with the Dielectric Barrier Discharge Detector. Journal of Chromatographic Science, 2006, 44, 101-107.	0.7	26
7	Multidimensional gas chromatography with capillary flow technology and LTM C. Journal of Separation Science, 2008, 31, 3385-3394.	1.3	23
8	Applications of planar microfluidic devices and gas chromatography for complex problem solving. Journal of Separation Science, 2013, 36, 182-191.	1.3	23
9	A brief history and recent advances in ozone induced chemiluminescence detection for the determination of sulfur compounds by gas chromatography. Analytical Methods, 2016, 8, 7014-7024.	1.3	22
10	Multidimensional gas chromatography for the characterization of permanent gases and light hydrocarbons in catalytic cracking process. Journal of Chromatography A, 2013, 1271, 185-191.	1.8	20
11	Capillary Flow Technology with Multi-Dimensional Gas Chromatography for Trace Analysis of Oxygenated Compounds in Complex Hydrocarbon Matrices. Journal of Chromatographic Science, 2007, 45, 664-670.	0.7	19
12	Twoâ€dimensional liquid chromatography with active solvent modulation for studying monomer incorporation in copolymer dispersants. Journal of Separation Science, 2019, 42, 2805-2815.	1.3	19
13	Gas Chromatography with State-of-the-Art Micromachined Differential Mobility Detection: Operation and Industrial Applications. Journal of Chromatographic Science, 2006, 44, 276-282.	0.7	18
14	Analysis of part-per-billion level of arsine and phosphine in light hydrocarbons by capillary flow technology and dielectric barrier discharge detector. Journal of Chromatography A, 2010, 1217, 348-352.	1.8	16
15	Direct Measurement of Elemental Mercury Using Multidimensional Gas Chromatography with Microwave-Induced Helium Plasma Atomic Emission Spectroscopy. ACS Earth and Space Chemistry, 2018, 2, 471-478.	1.2	16
16	Gas Chromatography with In Situ Catalytic Hydrogenolysis and Flame Ionization Detection for the Direct Measurement of Formaldehyde and Acetaldehyde in Challenging Matrices. Analytical Chemistry, 2018, 90, 13855-13859.	3.2	16
17	Determination of low levels of formaldehyde and acetaldehyde by gas chromatography/flame ionization detection with a nickel catalyst. Journal of High Resolution Chromatography, 1996, 19, 591-594.	2.0	15
18	Practical method for the measurement of Alkyl mercaptans in natural gas by multi-dimensional gas chromatography, capillary flow technology, and flame ionization detection. Journal of Chromatography A, 2009, 1216, 2776-2782.	1.8	15

Јім Luong

#	Article	IF	CITATIONS
19	Planar microfluidic devices in flow modulated comprehensive two dimensional gas chromatography for challenging petrochemical applications. Analytical Methods, 2013, 5, 6598.	1.3	14
20	Multi-dimensional gas chromatography with a planar microfluidic device for the characterization of volatile oxygenated organic compounds. Journal of Chromatography A, 2012, 1255, 216-220.	1.8	13
21	Multidimensional gas chromatography using microfluidic switching and low thermal mass gas chromatography for the characterization of targeted volatile organic compounds. Journal of Chromatography A, 2013, 1288, 105-110.	1.8	13
22	Tandem sulfur chemiluminescence and flame ionization detection with planar microfluidic devices for the characterization of sulfur compounds in hydrocarbon matrices. Journal of Chromatography A, 2013, 1297, 231-235.	1.8	12
23	Quasi-Stop-Flow Modulation Strategy for Comprehensive Two-Dimensional Gas Chromatography. Analytical Chemistry, 2020, 92, 6251-6256.	3.2	11
24	Determination of trace ethylene glycol in industrial solvents and lubricants using phenyl boronic acid derivatization and multidimensional gas chromatography. Analytica Chimica Acta, 2013, 805, 101-106.	2.6	10
25	Characterization of Phenol and Alkyl Phenols in Organic Matrixes with Monoethylene Glycol Extraction and Multidimensional Gas Chromatography/Mass Spectrometry. Analytical Chemistry, 2013, 85, 6219-6223.	3.2	10
26	Miniaturized micromachined gas chromatography with universal and selective detectors for targeted volatile compounds analysis. Journal of Chromatography A, 2018, 1573, 151-155.	1.8	10
27	Temperature-Programmable Resistively Heated Micromachined Gas Chromatography and Differential Mobility Spectrometry Detection for the Determination of Non-Sulfur Odorants in Natural Gas. Analytical Chemistry, 2013, 85, 3369-3373.	3.2	9
28	Determination of furfurals in Manuka honey using piston-cylinder liquid–liquid extraction and gas chromatography. Journal of Chromatography A, 2014, 1362, 43-48.	1.8	9
29	Metal 3Dâ€printed catalytic jet and flame ionization detection for in situ trace carbon oxides analysis by gas chromatography. Journal of Separation Science, 2019, 42, 2826-2834.	1.3	9
30	Stacked Injection with Low Thermal Mass Gas Chromatography for PPB Level Detection of Oxygenated Compounds in Hydrocarbons. Journal of Chromatographic Science, 2006, 44, 219-226.	0.7	8
31	A Unified Approach for the Measurement of Individual or Total Volatile Organic Sulfur Compounds in Hydrocarbon Matrices by Dual-Plasma Chemiluminescence Detector and Low Thermal Mass Gas Chromatography. Journal of Chromatographic Science, 2007, 45, 671-676.	0.7	8
32	Gas chromatography with diode array detection in series with flame ionisation detection. Journal of Chromatography A, 2017, 1500, 153-159.	1.8	8
33	Positive Temperature Coefficient Compensating Heating for Analytical Devices. Analytical Chemistry, 2018, 90, 6426-6430.	3.2	8
34	Dual-purpose gas chromatographic injection device for pressurized liquid and gas injection. Journal of Chromatography A, 2009, 1216, 2740-2748.	1.8	7
35	Developments in Ultra-Fast Temperature Programming with Silicon Micromachined Gas Chromatography: Performance and Limitations. Journal of Chromatographic Science, 2012, 50, 245-252.	0.7	7
36	Multidimensional <scp>GC</scp> using planar microfluidic devices for the characterization of phenolic antioxidants in fuels. Journal of Separation Science, 2013, 36, 2738-2745.	1.3	7

Jim Luong

#	Article	IF	CITATIONS
37	Trace-level screening of dichlorophenols in processed dairy milk by headspace gas chromatography. Journal of Separation Science, 2016, 39, 3957-3963.	1.3	7
38	Gas chromatography with simultaneous detection: Ultraviolet spectroscopy, flame ionization, and mass spectrometry. Journal of Chromatography A, 2018, 1563, 171-179.	1.8	7
39	Innovations in High-Pressure Liquid Injection Technique for Gas Chromatography: Pressurized Liquid Injection System. Journal of Chromatographic Science, 2003, 41, 550-559.	0.7	6
40	Resistively heated temperature programmable silicon micromachined gas chromatography with differential mobility spectrometry. International Journal for Ion Mobility Spectrometry, 2012, 15, 179-187.	1.4	6
41	Ultra-trace analysis of furanic compounds in transformer/rectifier oils with water extraction and high-performance liquid chromatography. Journal of Separation Science, 2016, 39, 2777-2784.	1.3	6
42	Uniformity and Sensitivity Improvements in Comprehensive Two-Dimensional Gas Chromatography Using Flame Ionization Detection with Post-Column Reaction. Analytical Chemistry, 2019, 91, 11223-11230.	3.2	6
43	Post-column reaction gas chromatography with a two-stage microreactor for the determination of volatile oxygenated compounds in high-pressure liquefied hydrocarbons. Analytical Methods, 2019, 11, 276-281.	1.3	6
44	Highâ€ŧhroughput gas chromatography for volatile compounds analysis by fast temperature programming and adsorption chromatography. Journal of Separation Science, 2017, 40, 1979-1984.	1.3	5
45	Gas chromatography and diode array detection for the direct measurement of carbon disulfide in challenging matrices. Analytical Methods, 2017, 9, 3908-3913.	1.3	5
46	<i>In situ</i> methanation with flame ionization detection for the determination of carbon dioxide in various matrices. Analytical Methods, 2018, 10, 1275-1279.	1.3	5
47	Temperature-programmable low thermal mass silicon micromachined gas chromatography and differential mobility detection for the fast analysis of trace level of ethylene oxide in medical work place atmospheres. Journal of Chromatography A, 2012, 1261, 136-141.	1.8	4
48	Back-flushing and heart cut capillary gas chromatography using planar microfluidic Deans' switching for the separation of benzene and alkylbenzenes in industrial samples. Journal of Chromatography A, 2015, 1421, 123-128.	1.8	4
49	Post-column reaction with a 3D-printed two-stage microreactor and flame ionization detection for carbon compound independent response in fast gas chromatography. Journal of Chromatography A, 2020, 1609, 460460.	1.8	4
50	Targeted Analysis of Microplastics Using Discrete Frequency Infrared Imaging. Analytical Chemistry, 2022, 94, 3029-3034.	3.2	4
51	Direct measurement of partâ€perâ€billion levels of dimethyl sulfoxide in water by gas chromatography with stacked injection and chemiluminescence detection. Journal of Separation Science, 2012, 35, 1486-1493.	1.3	3
52	Piston-cylinder based micro liquid–liquid extraction with GC–qMS for trace analysis of targeted chlorinated organic compounds in water. Canadian Journal of Chemistry, 2015, 93, 1283-1289.	0.6	3
53	A simplified approach in flow controlled multi-dimensional gas chromatography. Analytical Methods, 2017, 9, 2835-2839.	1.3	2
54	Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes. Journal of Separation Science, 2018, 41, 469-474.	1.3	2

Jim Luong

#	Article	IF	CITATIONS
55	Differential ion mobility spectrometry with temperature programmable micromachined gas chromatography for the determination of bis(chloromethyl)ether. Analytical Methods, 2017, 9, 5003-5008.	1.3	1
56	Advances in Automated Piston Liquid-Liquid Microextraction Technique. Journal of Chromatography A, 2021, 1651, 462330.	1.8	1
57	Volatile organic compounds and odorants analysis in industrial gas chromatography. Comprehensive Analytical Chemistry, 2022, , .	0.7	0