
Barth F Smets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9153699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival strategy of comammox bacteria in a wastewater nutrient removal system with sludge fermentation liquid as additional carbon source. Science of the Total Environment, 2022, 802, 149862.	3.9	13
2	Intermittent aeration to regulate microbial activities in membrane-aerated biofilm reactors: Energy-efficient nitrogen removal and low nitrous oxide emission. Chemical Engineering Journal, 2022, 433, 133630.	6.6	18
3	Evolutionary Ecology of Natural Comammox <i>Nitrospira</i> Populations. MSystems, 2022, 7, e0113921.	1.7	14
4	IncHI1A plasmids potentially facilitate horizontal flow of antibiotic resistance genes to pathogens in microbial communities of urban residential sewage. Molecular Ecology, 2022, 31, 1595-1608.	2.0	14
5	Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation: Impact of organic loading rate, hydraulic retention time and water composition. Bioresource Technology, 2022, 348, 126806.	4.8	6
6	Modelling N2O production and emissions. , 2022, , 167-196.		0
7	Chronic effects of cerium dioxide nanoparticles on biological nitrogen removal and nitrous oxide emission: Insight into impact mechanism and performance recovery potential. Bioresource Technology, 2022, 351, 126966.	4.8	1
8	Time to act–assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems. Water Research, 2021, 190, 116604.	5.3	8
9	Stable nitrogen removal by anammox process after rapid temperature drops: Insights from metagenomics and metaproteomics. Bioresource Technology, 2021, 320, 124231.	4.8	20
10	Temperature modulates stress response in mainstream anammox reactors. Communications Biology, 2021, 4, 23.	2.0	15
11	Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment: Insights from Molecular, Cellular, and Community Level Observations. Environmental Science & Technology, 2021, 55, 2173-2188.	4.6	49
12	Extended-Spectrum β-Lactamase and Carbapenemase Genes are Substantially and Sequentially Reduced during Conveyance and Treatment of Urban Sewage. Environmental Science & Technology, 2021, 55, 5939-5949.	4.6	24
13	Insights into chronic zinc oxide nanoparticle stress responses of biological nitrogen removal system with nitrous oxide emission and its recovery potential. Bioresource Technology, 2021, 327, 124797.	4.8	19
14	Combination of ¹⁵ N Tracer and Microbial Analyses Discloses N ₂ O Sink Potential of the Anammox Community. Environmental Science & Technology, 2021, 55, 9231-9242.	4.6	23
15	Pathogenic and Indigenous Denitrifying Bacteria are Transcriptionally Active and Key Multi-Antibiotic-Resistant Players in Wastewater Treatment Plants. Environmental Science & Technology, 2021, 55, 10862-10874.	4.6	60
16	EMBRACE-WATERS statement: Recommendations for reporting of studies on antimicrobial resistance in wastewater and related aquatic environments. One Health, 2021, 13, 100339.	1.5	11
17	Response to "Comment on â€~Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment': Overlooked Evidence to the Contrary― Environmental Science & Technology, 2021, 55, 16783-16784.	4.6	1
18	Dewatering methanotrophic enrichments intended for single cell protein production using biomimetic aquaporin forward osmosis membranes. Separation and Purification Technology, 2020, 235, 116133.	3.9	21

#	Article	lF	CITATIONS
19	Modelling N2O dynamics of activated sludge biomass: Uncertainty analysis and pathway contributions. Chemical Engineering Journal, 2020, 379, 122311.	6.6	22
20	A converging subset of soil bacterial taxa is permissive to the IncP-1 plasmid pKJK5 across a range of soil copper contamination. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
21	Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production. Bioresource Technology, 2020, 310, 123388.	4.8	34
22	Modeling Denitrification as an Electric Circuit Accurately Captures Electron Competition between Individual Reductive Steps: The Activated Sludge Model–Electron Competition Model. Environmental Science & Technology, 2020, 54, 7330-7338.	4.6	14
23	Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Science of the Total Environment, 2020, 743, 140804.	3.9	126
24	Minimum influent concentrations of oxytetracycline, streptomycin and spiramycin in selecting antibiotic resistance in biofilm type wastewater treatment systems. Science of the Total Environment, 2020, 720, 137531.	3.9	40
25	Coupling electrochemical ammonia extraction and cultivation of methane oxidizing bacteria for production of microbial protein. Journal of Environmental Management, 2020, 265, 110560.	3.8	21
26	Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME Journal, 2020, 14, 1170-1181.	4.4	62
27	Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Research, 2019, 162, 347-357.	5.3	108
28	Fate of Labile Organic Carbon in Paddy Soil Is Regulated by Microbial Ferric Iron Reduction. Environmental Science & Technology, 2019, 53, 8533-8542.	4.6	42
29	Copper-Induced Stimulation of Nitrification in Biological Rapid Sand Filters for Drinking Water Production by Proliferation of <i>Nitrosomonas</i> spp Environmental Science & Technology, 2019, 53, 12433-12441.	4.6	13
30	Enrichment, Isolation, and Characterization of High-Affinity N ₂ O-Reducing Bacteria in a Gas-Permeable Membrane Reactor. Environmental Science & Technology, 2019, 53, 12101-12112.	4.6	38
31	Guild Composition of Root-Associated Bacteria Changes with Increased Soil Contamination. Microbial Ecology, 2019, 78, 416-427.	1.4	3
32	Modelling carbofuran biotransformation by <i>Novosphingobium</i> sp. KN65.2 in the presence of coincidental carbon and indigenous microbes. Environmental Science: Water Research and Technology, 2019, 5, 798-807.	1.2	7
33	The effect of pH on N2O production in intermittently-fed nitritation reactors. Water Research, 2019, 156, 223-231.	5.3	36
34	Regulation of key N2O production mechanisms during biological water treatment. Current Opinion in Biotechnology, 2019, 57, 119-126.	3.3	32
35	Abiotic Nitrous Oxide (N ₂ O) Production Is Strongly pH Dependent, but Contributes Little to Overall N ₂ O Emissions in Biological Nitrogen Removal Systems. Environmental Science & Technology, 2019, 53, 3508-3516.	4.6	53
36	DNA- and RNA-SIP Reveal <i>Nitrospira</i> spp. as Key Drivers of Nitrification in Groundwater-Fed Biofilters. MBio, 2019, 10, .	1.8	33

#	Article	IF	CITATIONS
37	National innovative capacity in the water sector: A comparison between China and Europe. Journal of Cleaner Production, 2019, 210, 325-342.	4.6	6
38	Methanotrophic contribution to biodegradation of phenoxy acids in cultures enriched from a groundwater-fed rapid sand filter. Applied Microbiology and Biotechnology, 2019, 103, 1007-1019.	1.7	13
39	Removal of micropollutants during biological phosphorus removal: Impact of redox conditions in MBBR. Science of the Total Environment, 2019, 663, 496-506.	3.9	50
40	Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox <i>Nitrospira</i> . ISME Journal, 2018, 12, 1779-1793.	4.4	249
41	Reactor staging influences microbial community composition and diversity of denitrifying MBBRs- Implications on pharmaceutical removal. Water Research, 2018, 138, 333-345.	5.3	41
42	Estimating the Transfer Range of Plasmids Encoding Antimicrobial Resistance in a Wastewater Treatment Plant Microbial Community. Environmental Science and Technology Letters, 2018, 5, 260-265.	3.9	98
43	The pH dependency of Nâ€converting enzymatic processes, pathways and microbes: effect on net N ₂ O production. Environmental Microbiology, 2018, 20, 1623-1640.	1.8	80
44	Comammox <i>Nitrospira</i> are abundant ammonia oxidizers in diverse groundwaterâ€fed rapid sand filter communities. Environmental Microbiology, 2018, 20, 1002-1015.	1.8	211
45	Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter. Water Research, 2018, 129, 105-114.	5.3	36
46	Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia removal rate. Chemical Engineering Journal, 2018, 335, 458-466.	6.6	43
47	Diversity of Iron Oxidizers in Groundwater-Fed Rapid Sand Filters: Evidence of Fe(II)-Dependent Growth by Curvibacter and Undibacterium spp Frontiers in Microbiology, 2018, 9, 2808.	1.5	33
48	Corrigendum to "Decay Experiments of Effective N-Removing Microbial Communities in Sequencing Batch Reactors― Journal of Chemistry, 2018, 2018, 1-1.	0.9	0
49	Nitrous oxide emissions from biofilm processes for wastewater treatment. Applied Microbiology and Biotechnology, 2018, 102, 9815-9829.	1.7	71
50	Stochastic processes govern invasion success in microbial communities when the invader is phylogenetically close to resident bacteria. ISME Journal, 2018, 12, 2748-2756.	4.4	41
51	The industrial dynamics of water innovation: A comparison between China and Europe. International Journal of Innovation Studies, 2018, 2, 14-32.	1.4	17
52	Does universal 16S rRNA gene amplicon sequencing of environmental communities provide an accurate description of nitrifying guilds?. Journal of Microbiological Methods, 2018, 151, 28-34.	0.7	11
53	Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiology Ecology, 2018, 94, .	1.3	104
54	From biofilm ecology to reactors: a focused review. Water Science and Technology, 2017, 75, 1753-1760.	1.2	79

#	Article	IF	CITATIONS
55	Intermittent Aeration Suppresses Nitrite-Oxidizing Bacteria in Membrane-Aerated Biofilms: A Model-Based Explanation. Environmental Science & Technology, 2017, 51, 6146-6155.	4.6	68
56	Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses. Water Research, 2017, 123, 388-400.	5.3	87
57	<i>Nitrotoga</i> is selected over <i>Nitrospira</i> in newly assembled biofilm communities from a tap water source community at increased nitrite loading. Environmental Microbiology, 2017, 19, 2785-2793.	1.8	32
58	Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation. International Journal of Phytoremediation, 2017, 19, 877-883.	1.7	32
59	Microbial biotechnologies for potable water production. Microbial Biotechnology, 2017, 10, 1094-1097.	2.0	12
60	Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp Water Research, 2017, 127, 239-248.	5.3	74
61	Calibration of the comprehensive NDHA-N2O dynamics model for nitrifier-enriched biomass using targeted respirometric assays. Water Research, 2017, 126, 29-39.	5.3	12
62	Counter-diffusion biofilms have lower N2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis. Water Research, 2017, 124, 363-371.	5.3	87
63	Challenges in using allylthiourea and chlorate as specific nitrification inhibitors. Chemosphere, 2017, 182, 301-305.	4.2	30
64	Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors. Water Research, 2017, 123, 429-438.	5.3	36
65	Pathways and Controls of N ₂ O Production in Nitritation–Anammox Biomass. Environmental Science & Technology, 2017, 51, 8981-8991.	4.6	59
66	Heterotrophs are key contributors to nitrous oxide production in activated sludge under low Câ€toâ€N ratios during nitrification—Batch experiments and modeling. Biotechnology and Bioengineering, 2017, 114, 132-140.	1.7	24
67	Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME Journal, 2017, 11, 152-165.	4.4	114
68	Underestimation of ammoniaâ€oxidizing bacteria abundance by amplification bias in <i>amoA</i> â€ŧargeted <scp>qPCR</scp> . Microbial Biotechnology, 2016, 9, 519-524.	2.0	27
69	Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME Journal, 2016, 10, 2557-2568.	4.4	570
70	A conceptual framework for invasion in microbial communities. ISME Journal, 2016, 10, 2773-2779.	4.4	100
71	Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of <i>Nitrospira</i> spp ISME Journal, 2016, 10, 2569-2581.	4.4	213
72	Structural and functional robustness of an environmental bacterial community degrading diesel fuel. New Biotechnology, 2016, 33, S128.	2.4	0

#	Article	IF	CITATIONS
73	A consilience model to describe N ₂ O production during biological N removal. Environmental Science: Water Research and Technology, 2016, 2, 923-930.	1.2	27
74	Towards a consensus-based biokinetic model for green microalgae–ÂThe ASM-A. Water Research, 2016, 103, 485-499.	5.3	57
75	Biofilm Thickness Influences Biodiversity in Nitrifying MBBRs—Implications on Micropollutant Removal. Environmental Science & Technology, 2016, 50, 9279-9288.	4.6	135
76	Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil. New Biotechnology, 2016, 33, 852-859.	2.4	30
77	Short-sludge age EBPR process – Microbial and biochemical process characterisation during reactor start-up and operation. Water Research, 2016, 104, 320-329.	5.3	57
78	Harvesting microalgae using activated sludge can decrease polymer dosing and enhance methane production via co-digestion in a bacterial-microalgal process. Algal Research, 2016, 20, 197-204.	2.4	19
79	Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior. Water Research, 2016, 101, 402-410.	5.3	29
80	Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction. International Biodeterioration and Biodegradation, 2016, 113, 88-96.	1.9	74
81	Ecological patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters. ISME Journal, 2016, 10, 2209-2222.	4.4	125
82	Evaluating Alternate Biokinetic Models for Trace Pollutant Cometabolism. Environmental Science & Technology, 2015, 49, 2230-2236.	4.6	30
83	A nitrate sensitive planar optode; performance and interferences. Talanta, 2015, 144, 933-937.	2.9	8
84	Measuring biogeochemical heterogeneity at the micro scale in soils and sediments. Soil Biology and Biochemistry, 2015, 90, 122-138.	4.2	37
85	An improved method to set significance thresholds for <i>β</i> diversity testing in microbial community comparisons. Environmental Microbiology, 2015, 17, 3154-3167.	1.8	6
86	EBP2R – An innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation. Water Research, 2015, 68, 821-830.	5.3	35
87	Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME Journal, 2015, 9, 934-945.	4.4	330
88	A novel control strategy for single-stage autotrophic nitrogen removal in SBR. Chemical Engineering Journal, 2015, 260, 64-73.	6.6	11
89	Spectrometric characterization of the effluent dissolved organic matter from an anammox reactor shows correlation between the EEM signature and anammox growth. Chemosphere, 2014, 117, 271-277.	4.2	29
90	Novel assay to measure the plasmid mobilizing potential of mixed microbial communities. Frontiers in Microbiology, 2014, 5, 730.	1.5	27

#	Article	IF	CITATIONS
91	Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Frontiers in Microbiology, 2014, 5, 667.	1.5	41
92	Protocol for Evaluating the Permissiveness of Bacterial Communities Toward Conjugal Plasmids by Quantification and Isolation of Transconjugants. Springer Protocols, 2014, , 275-288.	0.1	19
93	A Model Framework to Describe Growth-Linked Biodegradation of Trace-Level Pollutants in the Presence of Coincidental Carbon Substrates and Microbes. Environmental Science & Technology, 2014, 48, 13358-13366.	4.6	19
94	Colony morphology and transcriptome profiling of P seudomonas putida KT 2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials. MicrobiologyOpen, 2014, 3, 457-469.	1.2	18
95	Structure, composition, and strength of nitrifying membrane-aerated biofilms. Water Research, 2014, 57, 151-161.	5.3	64
96	Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment. Applied and Environmental Microbiology, 2014, 80, 7010-7020.	1.4	40
97	Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics. Microbial Biotechnology, 2014, 7, 32-43.	2.0	50
98	Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone. Environmental Science & Technology, 2014, 48, 920-929.	4.6	21
99	Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors. Environmental Science & Technology, 2014, 48, 8679-8687.	4.6	69
100	Longâ€ŧerm manure exposure increases soil bacterial community potential for plasmid uptake. Environmental Microbiology Reports, 2014, 6, 125-130.	1.0	59
101	Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment. Water Research, 2014, 64, 226-236.	5.3	71
102	Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil?. Science of the Total Environment, 2014, 472, 90-98.	3.9	26
103	Seasonal and spatial variations in microbial activity at various phylogenetic resolutions at a groundwater – surface water interface. Canadian Journal of Microbiology, 2014, 60, 277-286.	0.8	1
104	Reply to Comment on "Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models― Environmental Science & Technology, 2013, 47, 11910-11911.	4.6	0
105	A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters. Water Research, 2013, 47, 6380-6387.	5.3	19
106	Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor. Journal of Membrane Science, 2013, 446, 332-340.	4.1	51
107	Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass. Water Research, 2013, 47, 5564-5574.	5.3	116
108	Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors. Journal of Membrane Science, 2013, 446, 465-471.	4.1	45

#	Article	IF	CITATIONS
109	Crystal ball – 2013. Microbial Biotechnology, 2013, 6, 3-16.	2.0	6
110	Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration. Environmental Engineering Science, 2013, 30, 38-45.	0.8	48
111	An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry. Water Science and Technology, 2013, 68, 514-521.	1.2	17
112	Calibration and validation of a model describing complete autotrophic nitrogen removal in a granular <scp>SBR</scp> system. Journal of Chemical Technology and Biotechnology, 2013, 88, 2007-2015.	1.6	12
113	Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment. Water Science and Technology: Water Supply, 2013, 13, 1295-1301.	1.0	14
114	Nitrous Oxide and Nitric Oxide Emissions From Single-Stage Nitritation/Anammox Reactors Under Varying Aeration Regimes. Proceedings of the Water Environment Federation, 2013, 2013, 6513-6518.	0.0	0
115	Control of a Biological Nitrogen Removal Process in an Intensified Single Reactor Configuration. Computer Aided Chemical Engineering, 2013, 32, 769-774.	0.3	1
116	Pseudomonad Swarming Motility Is Restricted to a Narrow Range of High Matric Water Potentials. Applied and Environmental Microbiology, 2012, 78, 2936-2940.	1.4	13
117	Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress. Applied and Environmental Microbiology, 2012, 78, 676-683.	1.4	40
118	Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm. Water Research, 2012, 46, 4645-4652.	5.3	122
119	Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND. Environmental Science & Technology, 2012, 46, 8826-8833.	4.6	20
120	Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries. Biochemical Engineering Journal, 2012, 69, 123-129.	1.8	20
121	Sensitivity analysis of autotrophic N removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics. Bioresource Technology, 2012, 123, 230-241.	4.8	51
122	Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models. Environmental Science & Technology, 2011, 45, 7768-7776.	4.6	161
123	Biological Nitrogen Removal from Domestic Wastewater. , 2011, , 329-340.		9
124	iDynoMiCS: nextâ€generation individualâ€based modelling of biofilms. Environmental Microbiology, 2011, 13, 2416-2434.	1.8	217
125	Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individualâ€based modelling study. Environmental Microbiology, 2011, 13, 2435-2452.	1.8	57
126	An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiology Ecology, 2011, 75, 17-27.	1.3	64

#	Article	IF	CITATIONS
127	Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles. FEMS Microbiology Ecology, 2011, 77, 666-679.	1.3	51
128	Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities. Water, Air, and Soil Pollution, 2011, 222, 17-25.	1.1	11
129	Biological Nitrogen Removal From Domestic Wastewater. , 2011, , 285-296.		2
130	A new extant respirometric assay to estimate intrinsic growth parameters applied to study plasmid metabolic burden. Biotechnology and Bioengineering, 2010, 105, 141-149.	1.7	9
131	Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface. FEMS Microbiology Ecology, 2010, 71, 260-271.	1.3	36
132	TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiology Letters, 2010, 312, 84-92.	0.7	36
133	Shifts between <i>Nitrospira</i> ―and <i>Nitrobacter</i> ―ike nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environmental Microbiology, 2010, 12, 315-326.	1.8	214
134	Inoculum effects on community composition and nitritation performance of autotrophic nitrifying biofilm reactors with counterâ€diffusion geometry. Environmental Microbiology, 2010, 12, 2858-2872.	1.8	59
135	Hydration-controlled bacterial motility and dispersal on surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14369-14372.	3.3	182
136	Novel Assay To Assess Permissiveness of a Soil Microbial Community toward Receipt of Mobile Genetic Elements. Applied and Environmental Microbiology, 2010, 76, 4813-4818.	1.4	67
137	Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration. Environmental Science & Technology, 2010, 44, 7628-7634.	4.6	109
138	Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology. Environmental Science & Technology, 2010, 44, 7622-7627.	4.6	21
139	Biodegradation in a Partially Saturated Sand Matrix: Compounding Effects of Water Content, Bacterial Spatial Distribution, and Motility. Environmental Science & Technology, 2010, 44, 2386-2392.	4.6	48
140	The Pressurized Porous Surface Model: An improved tool to study bacterial behavior under a wide range of environmentally relevant matric potentials. Journal of Microbiological Methods, 2010, 82, 324-326.	0.7	8
141	Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Research, 2010, 44, 6073-6084.	5.3	70
142	Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review. Environmental Engineering Science, 2010, 27, 111-126.	0.8	184
143	Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox. Applied and Environmental Microbiology, 2010, 76, 900-909.	1.4	318
144	Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor. Journal of Environmental Engineering, ASCE, 2009, 135, 806-814.	0.7	23

#	Article	IF	CITATIONS
145	The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures. Biotechnology and Bioengineering, 2009, 102, 714-724.	1.7	37
146	Nitrogen Removal from Digested Black Water by One-Stage Partial Nitritation and Anammox. Environmental Science & Technology, 2009, 43, 5035-5041.	4.6	160
147	Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison. Water Research, 2009, 43, 2699-2709.	5.3	51
148	Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification. Water Research, 2009, 43, 3469-3478.	5.3	60
149	Mass Action Models Describing Extant Horizontal Transfer of Plasmids: Inferences and Parameter Sensitivities. Methods in Molecular Biology, 2009, 532, 289-305.	0.4	2
150	A critical comparison of extant batch respirometric and substrate depletion assays for estimation of nitrification biokinetics. Biotechnology and Bioengineering, 2008, 101, 62-72.	1.7	19
151	Limited diffusive fluxes of substrate facilitate coexistence of two competing bacterial strains. FEMS Microbiology Ecology, 2008, 64, 1-8.	1.3	44
152	An improved cell recovery method for iron oxidizing bacterial (IOB) enrichments. Journal of Microbiological Methods, 2008, 72, 235-240.	0.7	5
153	Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study. Water Research, 2008, 42, 1102-1112.	5.3	175
154	Effects of heat-activated persulfate oxidation on soil microorganisms. Water Research, 2008, 42, 1013-1022.	5.3	129
155	Antecedent Growth Conditions Alter Retention of Environmental <i>Escherichia coli</i> Isolates in Transiently Wetted Porous Media. Environmental Science & Technology, 2008, 42, 9310-9316.	4.6	9
156	The Porous Surface Model, a Novel Experimental System for Online Quantitative Observation of Microbial Processes under Unsaturated Conditions. Applied and Environmental Microbiology, 2008, 74, 5195-5200.	1.4	48
157	Model Prediction of Completely Autotrophic Nitrogen Removal under Different Reactor Configurations. Proceedings of the Water Environment Federation, 2008, 2008, 3082-3100.	0.0	0
158	Population Dynamics of Aerobic and Anaerobic Ammonia Oxidizers in an Autotrophic Nitrogen Removal Membrane Biofilm Reactor. Proceedings of the Water Environment Federation, 2008, 2008, 3209-3220.	0.0	0
159	Controlling Gaseous Nitrogen Oxide Emissions and Nitrogen Removal Performance in Hollow Fiber Membrane-Aerated Biofilm Reactors. Proceedings of the Water Environment Federation, 2008, 2008, 327-342.	0.0	0
160	Biokinetic Characterization of the Acceleration Phase in Autotrophic Ammonia Oxidation. Water Environment Research, 2008, 80, 732-739.	1.3	14
161	Fluorescence in situ hybridization (FISH) to elucidate structure and diversity in granular biomass for the treatment of nitrogenous wastewater. Communications in Agricultural and Applied Biological Sciences, 2008, 73, 43-7.	0.0	0
162	Oxygen Mass Transfer in a Flow-through Hollow-fiber Membrane Aeration Reactor. Proceedings of the Water Environment Federation, 2007, 2007, 6531-6541.	0.0	0

#	Article	IF	CITATIONS
163	Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: The effect of co- versus counter-diffusion on reactor performance. Biotechnology and Bioengineering, 2007, 97, 40-51.	1.7	84
164	Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Advances in Water Resources, 2007, 30, 1505-1527.	1.7	513
165	TNT biotransformation: when chemistry confronts mineralization. Applied Microbiology and Biotechnology, 2007, 76, 267-277.	1.7	61
166	Intestinal versus External Growth Conditions Change the Surficial Properties in a Collection of EnvironmentalEscherichia colilsolates. Environmental Science & Technology, 2006, 40, 6976-6982.	4.6	20
167	Observation and mathematical description of the acceleration phenomenon in batch respirograms associated with ammonium oxidation. Water Science and Technology, 2006, 54, 181-188.	1.2	19
168	SAMPLING METHODS TO DETERMINE THE SPATIAL GRADIENTS AND FLUX OF ARSENIC AT A GROUNDWATER SEEPAGE ZONE. Environmental Toxicology and Chemistry, 2006, 25, 1487.	2.2	14
169	Oxidation of aminonitrotoluenes by 2,4-DNT dioxygenase ofBurkholderia sp. strain DNT. Biotechnology and Bioengineering, 2006, 93, 231-237.	1.7	8
170	BENCH-SCALE EVALUATION OF IN SITU BIOREMEDIATION STRATEGIES FOR SOIL AT A FORMER MANUFACTURED GAS PLANT SITE. Environmental Toxicology and Chemistry, 2005, 24, 741.	2.2	26
171	Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nature Reviews Microbiology, 2005, 3, 675-678.	13.6	123
172	Saturation mutagenesis of 2,4-DNT dioxygenase ofBurkholderia sp. strain DNT for enhanced dinitrotoluene degradation. Biotechnology and Bioengineering, 2005, 92, 416-426.	1.7	29
173	Reductive transformation of TNT by Escherichia coli: pathway description. Applied Microbiology and Biotechnology, 2005, 67, 397-404.	1.7	36
174	TNT and nitroaromatic compounds are chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. strain DNT. Applied Microbiology and Biotechnology, 2005, 69, 321-325.	1.7	20
175	Reductive transformation of TNT by Escherichia coli resting cells: kinetic analysis. Applied Microbiology and Biotechnology, 2005, 69, 326-334.	1.7	10
176	Applicability of an extant batch respirometric assay in describing dynamics of ammonia and nitrite oxidation in a nitrifying bioreactor. Water Science and Technology, 2005, 52, 503-508.	1.2	5
177	Conjugal TOL Transfer from Pseudomonas putida to Pseudomonas aeruginosa : Effects of Restriction Proficiency, Toxicant Exposure, Cell Density Ratios, and Conjugation Detection Method on Observed Transfer Efficiencies. Applied and Environmental Microbiology, 2005, 71, 51-57.	1.4	46
178	Protein Engineering of the Archetypal Nitroarene Dioxygenase of Ralstonia sp. Strain U2 for Activity on Aminonitrotoluenes and Dinitrotoluenes through Alpha-Subunit Residues Leucine 225, Phenylalanine 350, and Glycine 407. Journal of Bacteriology, 2005, 187, 3302-3310.	1.0	30
179	Macro- and Nanoscale Observations of Adhesive Behavior for SeveralE. coliStrains (O157:H7 and) Tj ETQq1 1 0. 6395-6404.	.784314 rgl 4.6	BT /Overlock 77
180	Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals. Water Research, 2005, 39, 710-720.	5.3	48

#	Article	IF	CITATIONS
181	Effect of long-term exposure, biogenic substrate presence, and electron acceptor conditions on the biodegradation of multiple substituted benzoates and phenolates. Water Research, 2005, 39, 3501-3510.	5.3	25
182	Optimizing experimental design to estimate ammonia and nitrite oxidation biokinetic parameters from batch respirograms. Water Research, 2005, 39, 4969-4978.	5.3	36
183	Saturation Mutagenesis of Burkholderia cepacia R34 2,4-Dinitrotoluene Dioxygenase at DntAc Valine 350 for Synthesizing Nitrohydroquinone, Methylhydroquinone, and Methoxyhydroquinone. Applied and Environmental Microbiology, 2004, 70, 3222-3231.	1.4	41
184	High Diversity among Environmental Escherichia coli Isolates from a Bovine Feedlot. Applied and Environmental Microbiology, 2004, 70, 1528-1536.	1.4	51
185	APPLICABILITY OF AN EXTANT BATCH RESPIROMETRIC ASSAY IN DESCRIBING DYNAMICS OF AMMONIA AND NITRITE OXIDATION IN A NITRIFYING BIOREACTOR. Proceedings of the Water Environment Federation, 2004, 2004, 175-175.	0.0	0
186	BIOKINETIC CHARACTERIZATION OF THE ACCELERATION PHASE IN AUTOTROPHIC AMMONIA OXIDATION. Proceedings of the Water Environment Federation, 2004, 2004, 59-77.	0.0	0
187	Enhancement of Polynuclear Aromatic Hydrocarbon Desorption by Complexing Agents in Weathered Soil. Environmental Engineering Science, 2004, 21, 515-523.	0.8	37
188	Start-up of Autotrophic Nitrogen Removal Reactors via Sequential Biocatalyst Addition. Environmental Science & Technology, 2004, 38, 1228-1235.	4.6	137
189	Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Research, 2004, 38, 3949-3959.	5.3	107
190	Relative Efficacy of Intrinsic and Extant Parameters for Modeling Biodegradation of Synthetic Organic Compounds in Activated Sludge: Dynamic Systems. Water Environment Research, 2004, 76, 256-267.	1.3	0
191	Identifiability and retrievability of unique parameters describing intrinsic Andrews kinetics. Applied Microbiology and Biotechnology, 2003, 61, 314-322.	1.7	11
192	Elucidating the microbial component of natural attenuation. Current Opinion in Biotechnology, 2003, 14, 283-288.	3.3	41
193	Attenuation of a Mixed Chromium and Chlorinated Etjeme Ground Wate Plume in Estuarine Influenced Glaciated Sediments. Ground Water Monitoring and Remediation, 2003, 23, 74-84.	0.6	4
194	Impact of Metal Sorption and Internalization on Nitrification Inhibition. Environmental Science & Technology, 2003, 37, 728-734.	4.6	142
195	Perceived Substratum Characteristics as a Function of AFM Probe and Imaging Fluid Properties. Langmuir, 2003, 19, 6151-6159.	1.6	4
196	Comparison of a type curve and a least-squared errors method to estimate biofilm kinetic parameters. Water Research, 2003, 37, 3279-3285.	5.3	9
197	Plasmid Introduction in Metal-Stressed, Subsurface-Derived Microcosms: Plasmid Fate and Community Response. Applied and Environmental Microbiology, 2003, 69, 4087-4097.	1.4	21
198	Characterization of an Autotrophic Nitrogen-Removing Biofilm from a Highly Loaded Lab-Scale Rotating Biological Contactor. Applied and Environmental Microbiology, 2003, 69, 3626-3635.	1.4	231

#	Article	IF	CITATIONS
199	Nitrification Inhibition by Ethylenediamine-Based Chelating Agents. Environmental Engineering Science, 2003, 20, 219-228.	0.8	17
200	Relative Efficacy of Intrinsic and Extant Parameters for Modeling Biodegradation of Synthetic Organic Compounds in Activated Sludge: Steady-State Systems. Water Environment Research, 2003, 75, 126-137.	1.3	3
201	Microbial imprints as forensic tools in food production. Environmental Microbiology, 2002, 4, 16-17.	1.8	1
202	A Comparative Study of Nitrification Inhibition by Heavy Metals: the Influence of Metal Exposure Time on Biological Effect. Proceedings of the Water Environment Federation, 2002, 2002, 869-887.	0.0	0
203	Effect of Nickel and Cadmium Speciation on Nitrification Inhibition. Environmental Science & Technology, 2002, 36, 3074-3078.	4.6	127
204	Evaluation of a rapid physical–chemical method for the determination of extant soluble COD. Water Research, 2002, 36, 617-624.	5.3	65
205	NAD(P)H:Flavin Mononucleotide Oxidoreductase Inactivation during 2,4,6-Trinitrotoluene Reduction. Applied and Environmental Microbiology, 2002, 68, 1690-1696.	1.4	35
206	Natural attenuation: extant microbial activity forever and ever?. Environmental Microbiology, 2002, 4, 315-317.	1.8	10
207	Transformation and mineralization of benzo[a]pyrene by microbial cultures enriched on mixtures of three- and four-ring polycyclic aromatic hydrocarbons. Journal of Industrial Microbiology and Biotechnology, 2002, 28, 70-73.	1.4	7
208	Oxidative Transformation of Aminodinitrotoluene Isomers by Multicomponent Dioxygenases. Applied and Environmental Microbiology, 2001, 67, 5460-5466.	1.4	26
209	Estimating biomass yield coefficients for autotrophic ammonia and nitrite oxidation from batch respirograms. Water Research, 2001, 35, 3153-3156.	5.3	32
210	Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere, 2001, 43, 1013-1021.	4.2	149
211	Metabolism of 2,4-dinitrotoluene (2,4-DNT) by Alcaligenes sp. JS867 under oxygen limited conditions. Biodegradation, 2001, 12, 209-217.	1.5	8
212	Optimal Experimental Design for Estimating Ammonia and Nitrite Oxidation Biokinetics from Batch Respirograms. Proceedings of the Water Environment Federation, 2001, 2001, 545-560.	0.0	1
213	EVALUATION OF NITRIFICATION INHIBITION BY HEAVY METALS NICKEL AND ZINC. Proceedings of the Water Environment Federation, 2001, 2001, 581-595.	0.0	Ο
214	Aerobic Biodegradation of Nitroglycerin in a Sequencing Batch Reactor. Water Environment Research, 2000, 72, 499-506.	1.3	12
215	Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. Biotechnology and Bioengineering, 2000, 68, 396-406.	1.7	92
216	Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation. Biotechnology and Bioengineering, 2000, 70, 54-64.	1.7	38

#	Article	IF	CITATIONS
217	Enzymatic Reduction of 2,4,6-Trinitrotoluene and Related Nitroarenes: Kinetics Linked to One-Electron Redox Potentials. Environmental Science & Technology, 2000, 34, 3900-3906.	4.6	56
218	An Approach for Incorporating Information on Chemical Availability in Soils into Risk Assessment and Risk-Based Decision Making, Prepared by: The New England Environmentally Acceptable Endpoints Workgroup. Human and Ecological Risk Assessment (HERA), 2000, 6, 479-510.	1.7	11
219	A Sorptive Slurry Bioscrubber for the Control of Acetone. Journal of the Air and Waste Management Association, 2000, 50, 954-960.	0.9	12
220	Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. , 2000, 68, 396.		2
221	Applicability of twoâ€step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation. Biotechnology and Bioengineering, 2000, 70, 54-64.	1.7	1
222	Surface physicochemical properties of Pseudomonas fluorescens and impact on adhesion and transport through porous media. Colloids and Surfaces B: Biointerfaces, 1999, 14, 121-139.	2.5	72
223	Kinetic analysis of simultaneous 2,4-dinitrotoluene (DNT) and 2,6-DNT biodegradation in an aerobic fluidized-bed biofilm reactor. , 1999, 63, 642-653.		22
224	High affinity p-nitrophenol oxidation by Bacillus sphaericus JS905. FEMS Microbiology Letters, 1998, 166, 115-120.	0.7	19
225	Respirometric assay for biofilm kinetics estimation: Parameter identifiability and retrievability. , 1998, 57, 35-45.		39
226	Simultaneous Biodegradation of 2,4-Dinitrotoluene and 2,6-Dinitrotoluene in an Aerobic Fluidized-Bed Biofilm Reactor. Environmental Science & Technology, 1998, 32, 82-87.	4.6	72
227	EQUILIBRIUM MODELING OF PSEUDOMONAD AGGREGATION AND PARTITIONING TO DOLOMITEâ€. Journal of Dispersion Science and Technology, 1998, 19, 1081-1106.	1.3	6
228	Effect of simultaneous biodegradation of multiple substrates on the extant biodegradation kinetics of individual substrates. Water Environment Research, 1998, 70, 27-38.	1.3	12
229	Aerobic Growth on Nitroglycerin as the Sole Carbon, Nitrogen, and Energy Source by a Mixed Bacterial Culture. Applied and Environmental Microbiology, 1998, 64, 3300-3304.	1.4	32
230	Respirometric protocol to evaluate acute microbial inhibition in activated sludge. , 1997, , 597-610.		0
231	Impact of Physiological State on Surface Thermodynamics and Adhesion ofPseudomonas aeruginosa. Environmental Science & Technology, 1996, 30, 3604-3608.	4.6	95
232	Variability in kinetic parameter estimates: A review of possible causes and a proposed terminology. Water Research, 1996, 30, 742-748.	5.3	238
233	Evaluation of Respirometric Data: Identification of Features That Preclude Data Fitting with Existing Kinetic Expressions. Ecotoxicology and Environmental Safety, 1996, 33, 88-99.	2.9	28
234	Development of a respirometric assay to measure the transient load response of activated sludge to individual organic chemicals. Water Science and Technology, 1996, 33, 49-55.	1.2	14

#	ARTICLE	IF	CITATIONS
235	Respirometric technique for determination of extant kinetic parameters describing biodegradation. Water Environment Research, 1996, 68, 917-926.	1.3	108
236	Oxygen transfer limitation of a respirometer. Water Environment Research, 1996, 68, 1084-1086.	1.3	2
237	Changes in measured biodegradation kinetics during the long-term operation of completely mixed activated sludge (CMAS) bioreactors. Water Science and Technology, 1996, 34, 35-42.	1.2	28
238	Nitroglycerin biodegradation: Theoretical thermodynamic considerations. Journal of Energetic Materials, 1995, 13, 385-398.	1.0	16
239	Quantification of the effect of substrate concentration on the conjugal transfer rate of the TOL plasmid in short-term batch mating experiments. Letters in Applied Microbiology, 1995, 21, 167-172.	1.0	21
240	Plasmid Transfer for Enhancing Degradation Capabilities. Environmental Health Perspectives, 1995, 103, 113.	2.8	298
241	Stability and conjugal transfer kinetics of a TOL plasmid in Pseudomonas aeruginosa PAO 1162. FEMS Microbiology Ecology, 1994, 15, 337-350.	1.3	12
242	Quantification of the kinetic differences between communities isolated from completely mixed activated sludge systems operated with or without a selector using a novel respirometric method. Water Science and Technology, 1994, 30, 255-261.	1.2	22
243	The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Applied and Environmental Microbiology, 1993, 59, 3430-3437.	1.4	61
244	The effects of energy availability on the conjugative-transfer kinetics of plasmid RP4. Water Research, 1992, 26, 461-468.	5.3	32
245	The role of genes in biological processes. Part 1. Environmental Science & Technology, 1990, 24, 23-29.	4.6	47
246	The role of genes in biological processes. Part 2. Environmental Science & Technology, 1990, 24, 162-169.	4.6	13
247	Sorption equilibria for trichloroethene on algae. Water Research, 1990, 24, 355-360.	5.3	22