## Erik Brundermann

## List of Publications by Citations

Source: https://exaly.com/author-pdf/9153555/erik-brundermann-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73
papers

1,912
citations

h-index

89
ext. papers

2,248
ext. citations

3.9
avg, IF

42
g-index

4.39
L-index

| #  | Paper                                                                                                                                                                                                                                  | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy.  Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12301-6                                           | 11.5 | 329       |
| 72 | Long-range influence of carbohydrates on the solvation dynamics of wateranswers from terahertz absorption measurements and molecular modeling simulations. <i>Journal of the American Chemical Society</i> , <b>2008</b> , 130, 5773-9 | 16.4 | 216       |
| 71 | Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. <i>Journal of the American Chemical Society</i> , <b>2009</b> , 131, 3752-5                             | 16.4 | 94        |
| 70 | Terahertz Techniques. Springer Series in Optical Sciences, 2012,                                                                                                                                                                       | 0.5  | 87        |
| 69 | Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. <i>Analyst, The</i> , <b>2010</b> , 135, 1370-4                                                                        | 5    | 64        |
| 68 | Four-wave mixing and direct terahertz emission with two-color semiconductor lasers. <i>Applied Physics Letters</i> , <b>2004</b> , 84, 3585-3587                                                                                       | 3.4  | 63        |
| 67 | Communications: Polarity fluctuations of the protic ionic liquid ethylammonium nitrate in the terahertz regime. <i>Journal of Chemical Physics</i> , <b>2010</b> , 132, 101101                                                         | 3.9  | 58        |
| 66 | New p-Ge THz laser spectrometer for the study of solutions: THz absorption spectroscopy of water. <i>Review of Scientific Instruments</i> , <b>2005</b> , 76, 063110                                                                   | 1.7  | 52        |
| 65 | Graphene multilayer as nanosized optical strain gauge for polymer surface relief gratings. <i>Nano Letters</i> , <b>2014</b> , 14, 5754-60                                                                                             | 11.5 | 47        |
| 64 | High duty cycle and continuous terahertz emission from germanium. <i>Applied Physics Letters</i> , <b>2000</b> , 76, 2991-2993                                                                                                         | 3.4  | 47        |
| 63 | Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon. <i>Physical Chemistry Chemical Physics</i> , <b>2006</b> , 8, 753-8                                        | 3.6  | 46        |
| 62 | Generalized Kramers Kronig receiver for coherent terahertz communications. <i>Nature Photonics</i> , <b>2020</b> , 14, 601-606                                                                                                         | 33.9 | 46        |
| 61 | Terahertz time-domain spectroscopy as a new tool for the characterization of dust forming plasmas. <i>Plasma Sources Science and Technology</i> , <b>2006</b> , 15, 72-77                                                              | 3.5  | 36        |
| 60 | Turn-key compact high temperature terahertz quantum cascade lasers: imaging and room temperature detection. <i>Optics Express</i> , <b>2006</b> , 14, 1829-41                                                                          | 3.3  | 35        |
| 59 | Nanoscale depth resolution in scanning near-field infrared microscopy. <i>Optics Express</i> , <b>2008</b> , 16, 7453-9                                                                                                                | 3.3  | 33        |
| 58 | Chemical Imaging of Microstructured Self-Assembled Monolayers with Nanometer Resolution.<br>Journal of Physical Chemistry C, <b>2007</b> , 111, 8166-8171                                                                              | 3.8  | 30        |
| 57 | Double acceptor doped Ge: A new medium for inter-valence-band lasers. <i>Applied Physics Letters</i> , <b>1996</b> , 68, 3075-3077                                                                                                     | 3.4  | 28        |

| 56 | Uncertainty and Ambiguity in Terahertz Parameter Extraction and Data Analysis. <i>Journal of Infrared, Millimeter, and Terahertz Waves</i> , <b>2011</b> , 32, 699-715                                            | 2.2         | 27 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
| 55 | Narrow linewidth intervalence-band emission from germanium terahertz lasers. <i>Applied Physics Letters</i> , <b>2003</b> , 83, 3-5                                                                               | 3.4         | 26 |
| 54 | Terahertz Spectroscopy: System and Sensitivity Considerations. <i>IEEE Transactions on Terahertz Science and Technology</i> , <b>2011</b> , 1, 321-331                                                            | 3.4         | 25 |
| 53 | Stimulated far-infrared emission from combined cyclotron resonances in germanium. <i>Physical Review B</i> , <b>1997</b> , 56, 12069-12072                                                                        | 3.3         | 24 |
| 52 | Mode fine structure of the p-Ge intervalenceband laser measured by heterodyne mixing spectroscopy with an optically pumped ring gas laser. <i>Infrared Physics and Technology</i> , <b>1995</b> , 36, 59-69       | 2.7         | 23 |
| 51 | Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films. <i>Soft Matter</i> , <b>2014</b> , 10, 1544-54 | 3.6         | 22 |
| 50 | Far-infrared multilayer mirrors. Applied Physics Letters, 2003, 83, 4119-4121                                                                                                                                     | 3.4         | 22 |
| 49 | Detection of Hybridization on Nanografted Oligonucleotides Using Scanning Near-Field Infrared Microscopy. <i>Journal of Physical Chemistry C</i> , <b>2010</b> , 114, 1306-1311                                   | 3.8         | 21 |
| 48 | SNIM: Scanning near-field infrared microscopy. <i>Annual Reports on the Progress of Chemistry Section C</i> , <b>2008</b> , 104, 235                                                                              |             | 20 |
| 47 | Unraveling the interactions between cold atmospheric plasma and skin-components with vibrational microspectroscopy. <i>Biointerphases</i> , <b>2015</b> , 10, 029516                                              | 1.8         | 19 |
| 46 | A matter of scale: from far-field microscopy to near-field nanoscopy. <i>Laser and Photonics Reviews</i> , <b>2012</b> , 6, 296-332                                                                               | 8.3         | 19 |
| 45 | First operation of a far-infrared p-germanium laser in a standard close-cycle machine at 15 K. <i>Infrared Physics and Technology</i> , <b>1997</b> , 38, 201-203                                                 | 2.7         | 19 |
| 44 | Widely Tunable Far-Infrared Hot-Hole Semiconductor Lasers <b>2005</b> , 279-350                                                                                                                                   |             | 19 |
| 43 | Thermal effects in widely tunable germanium terahertz lasers. <i>Applied Physics Letters</i> , <b>1998</b> , 73, 2757-2                                                                                           | 7 <u>59</u> | 19 |
| 42 | Smart polymer surfaces: mapping chemical landscapes on the nanometre scale. <i>Soft Matter</i> , <b>2010</b> , 6, 3764                                                                                            | 3.6         | 18 |
| 41 | Scanning near-field IR microscopy of proteins in lipid bilayers. <i>Physical Chemistry Chemical Physics</i> , <b>2011</b> , 13, 21432-6                                                                           | 3.6         | 18 |
| 40 | Novel design concepts of widely tunable germanium terahertz lasers. <i>Infrared Physics and Technology</i> , <b>1999</b> , 40, 141-151                                                                            | 2.7         | 18 |
| 39 | Stimulated far-infrared emission from copper-doped germanium crystals. <i>Applied Physics Letters</i> , <b>1997</b> , 70, 1659-1661                                                                               | 3.4         | 16 |

| 38 | Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy. <i>Journal Physics D: Applied Physics</i> , <b>2016</b> , 49, 374003                    | 3                | 14 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
| 37 | Hydrophobic collapse induces changes in the collective protein and hydration low frequency modes. <i>Chemical Physics Letters</i> , <b>2016</b> , 651, 1-7                                                   | 2.5              | 13 |
| 36 | Similar appearance, different mechanisms: xerosis in HIV, atopic dermatitis and ageing. <i>Experimental Dermatology</i> , <b>2014</b> , 23, 446-8                                                            | 4                | 13 |
| 35 | Mode-locked operation of the copper-doped germanium terahertz laser. <i>Applied Physics Letters</i> , <b>2000</b> , 77, 3155-3157                                                                            | 3.4              | 12 |
| 34 | Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study. <i>Journal of Biophotonics</i> , <b>2015</b> , 8, 918-24                                | 3.1              | 11 |
| 33 | Planar contact geometry for far-infrared germanium lasers. <i>Applied Physics Letters</i> , <b>1999</b> , 74, 3761-3763                                                                                      | 3.4              | 11 |
| 32 | 110-m THz Wireless Transmission at 100 Gbit/s Using a Kramers-Kronig Schottky Barrier Diode Receiver <b>2018</b> ,                                                                                           |                  | 11 |
| 31 | Combined THz and Microwave Dielectric Spectroscopy of Intermolecular Interactions in Homologous Protic Ionic Liquids. <i>IEEE Transactions on Terahertz Science and Technology</i> , <b>2011</b> , 1, 313-32 | 29 <sup>.4</sup> | 10 |
| 30 | Fast quantification of water in single living cells by near-infrared microscopy. <i>Analyst, The</i> , <b>2004</b> , 129, 893-6                                                                              | 5                | 10 |
| 29 | Terahertz emission of population-inverted hot-holes in single-crystalline silicon. <i>Applied Physics Letters</i> , <b>1998</b> , 73, 723-725                                                                | 3.4              | 10 |
| 28 | Fast mapping of terahertz bursting thresholds and characteristics at synchrotron light sources. <i>Physical Review Accelerators and Beams</i> , <b>2016</b> , 19,                                            | 1.8              | 10 |
| 27 | Frequency-Comb Spectrum of Periodic-Patterned Signals. <i>Physical Review Letters</i> , <b>2016</b> , 117, 174802                                                                                            | 7.4              | 9  |
| 26 | Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy. <i>Journal of Applied Physics</i> , <b>2009</b> , 105, 064908                                          | 2.5              | 9  |
| 25 | Confocal Raman Microscopy and AFM Study of the Interface Between the Photosensitive Polymer Layer and Multilayer Graphene. <i>Soft Materials</i> , <b>2014</b> , 12, S98-S105                                | 1.7              | 8  |
| 24 | Observation of mesoscopic effects in Schottky diodes at 300 K when used as mixers at THz frequencies. <i>Semiconductor Science and Technology</i> , <b>1996</b> , 11, 1328-1332                              | 1.8              | 8  |
| 23 | Terahertz cavity-enhanced attenuated total reflection spectroscopy. <i>Applied Physics Letters</i> , <b>2005</b> , 86, 201116                                                                                | 3.4              | 8  |
| 22 | Terahertz spectroscopic techniques for the study of proteins in aqueous solutions 2009,                                                                                                                      |                  | 7  |
| 21 | Terahertz Absorption of Chemicals in Water: Ideal and Real Solutions and Mixtures. <i>Journal of Infrared, Millimeter, and Terahertz Waves</i> , <b>2014</b> , 35, 38-52                                     | 2.2              | 6  |

## (2021-2015)

| 20 | Non-invasive chemical assessment of living human spermatozoa. <i>RSC Advances</i> , <b>2015</b> , 5, 10424-10429                                                                                    | 3.7 | 6 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 19 | Local chemical composition of nanophase-separated polymer brushes. <i>Physical Chemistry Chemical Physics</i> , <b>2011</b> , 13, 11620-6                                                           | 3.6 | 6 |
| 18 | KAPTURE-2. A picosecond sampling system for individual THz pulses with high repetition rate. <i>Journal of Instrumentation</i> , <b>2017</b> , 12, C01040-C01040                                    | 1   | 4 |
| 17 | Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes. <i>Journal of Physics: Conference Series</i> , <b>2012</b> , 359, 012015                           | 0.3 | 4 |
| 16 | Introducing cymantrene labels into scattering scanning near-field infrared microscopy. <i>Analyst, The</i> , <b>2012</b> , 137, 4995-5001                                                           | 5   | 3 |
| 15 | Non-invasive nano-imaging of ion implanted and activated copper in silicon. <i>Journal of Applied Physics</i> , <b>2011</b> , 110, 024307                                                           | 2.5 | 3 |
| 14 | Continuous bunch-by-bunch spectroscopic investigation of the microbunching instability. <i>Physical Review Accelerators and Beams</i> , <b>2018</b> , 21,                                           | 1.8 | 3 |
| 13 | High throughput data streaming of individual longitudinal electron bunch profiles. <i>Physical Review Accelerators and Beams</i> , <b>2019</b> , 22,                                                | 1.8 | 3 |
| 12 | Terahertz Imaging. Springer Series in Optical Sciences, 2012, 301-340                                                                                                                               | 0.5 | 2 |
| 11 | Synchronous detection of longitudinal and transverse bunch signals at a storage ring. <i>Physical Review Accelerators and Beams</i> , <b>2018</b> , 21,                                             | 1.8 | 2 |
| 10 | Fabry <b>P</b> Eot Cavities for the Terahertz Spectral Range Based on High-Reflectivity Multilayer Mirrors. <i>IEEE Transactions on Terahertz Science and Technology</i> , <b>2016</b> , 6, 563-567 | 3.4 | 2 |
| 9  | From self-organization in relativistic electron bunches to coherent synchrotron light: observation using a photonic time-stretch digitizer. <i>Scientific Reports</i> , <b>2019</b> , 9, 10391      | 4.9 | 1 |
| 8  | Optical Components. Springer Series in Optical Sciences, 2012, 51-101                                                                                                                               | 0.5 | 1 |
| 7  | Chemical microscopy and nanoscopy of bio-materials and living cells <b>2010</b> ,                                                                                                                   |     | 1 |
| 6  | Applications of semiconductor terahertz lasers in biomolecular spectroscopy and imaging 2006,                                                                                                       |     | 1 |
| 5  | Systematic studies of the microbunching instability at very low bunch charges. <i>Physical Review Accelerators and Beams</i> , <b>2019</b> , 22,                                                    | 1.8 | 1 |
| 4  | Detectors. Springer Series in Optical Sciences, <b>2012</b> , 169-245                                                                                                                               | 0.5 | О |
| 3  | Accelerated Deep Reinforcement Learning for Fast Feedback of Beam Dynamics at KARA. <i>IEEE Transactions on Nuclear Science</i> , <b>2021</b> , 68, 1794-1800                                       | 1.7 | О |

Optical Principles at Terahertz Frequencies. Springer Series in Optical Sciences, **2012**, 23-49

0.5

Spectroscopic Methods. Springer Series in Optical Sciences, **2012**, 247-300

0.5