Carsten W Mueller

List of Publications by Citations

Source: https://exaly.com/author-pdf/9153400/carsten-w-mueller-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

116 2,998 50 34 h-index g-index citations papers 6.4 5.56 152 4,223 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
116	Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications, 2014 , 5, 2947	17.4	220
115	Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. <i>Frontiers in Microbiology</i> , 2018 , 9, 1929	5.7	110
114	Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. <i>Soil Biology and Biochemistry</i> , 2018 , 122, 19-30	7.5	109
113	Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. <i>European Journal of Soil Science</i> , 2012 , 63, 22-31	3.4	85
112	Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. <i>Biogeochemistry</i> , 2017 , 132, 307-324	3.8	77
111	STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	74
110	Submicron scale imaging of soil organic matter dynamics using NanoSIMS From single particles to intact aggregates. <i>Organic Geochemistry</i> , 2012 , 42, 1476-1488	3.1	72
109	Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. <i>Biology and Fertility of Soils</i> , 2009 , 45, 347-359	6.1	70
108	Root Exudates Induce Soil Macroaggregation Facilitated by Fungi in Subsoil. <i>Frontiers in Environmental Science</i> , 2018 , 6,	4.8	66
107	Large amounts of labile organic carbon in permafrost soils of northern Alaska. <i>Global Change Biology</i> , 2015 , 21, 2804-2817	11.4	64
106	Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta. <i>Biogeosciences</i> , 2013 , 10, 3145-3158	4.6	60
105	Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. <i>Scientific Reports</i> , 2018 , 8, 6852	4.9	58
104	Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. <i>Global Change Biology</i> , 2018 , 24, 1762-1770	11.4	58
103	Advances in the Analysis of Biogeochemical Interfaces. Advances in Agronomy, 2013, 1-46	7.7	57
102	Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.). <i>Geoderma</i> , 2016 , 264, 179-187	6.7	56
101	Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment. <i>Soil Biology and Biochemistry</i> , 2017 , 107, 188-197	7.5	53
100	Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach. <i>Scientific Reports</i> , 2016 , 6, 29478	4.9	53

(2017-2014)

99	Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change. <i>Nature Geoscience</i> , 2014 , 7, 428-432	18.3	53	
98	Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. <i>Global Change Biology</i> , 2018 , 25, 1529	11.4	53	
97	Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles. <i>Soil Biology and Biochemistry</i> , 2018 , 118, 79-90	7.5	52	
96	Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. <i>Geoderma</i> , 2017 , 289, 29-35	6.7	52	
95	Linking 3D Soil Structure and Plant-Microbe-Soil Carbon Transfer in the Rhizosphere. <i>Frontiers in Environmental Science</i> , 2018 , 6,	4.8	51	
94	Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. <i>Communications Biology</i> , 2019 , 2, 233	6.7	49	
93	Decoupled carbon and nitrogen mineralization in soil particle size fractions of a forest topsoil. <i>Soil Biology and Biochemistry</i> , 2014 , 78, 263-273	7.5	47	
92	NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils. <i>Journal of Soils and Sediments</i> , 2012 , 12, 35-47	3.4	45	
91	The fate of cutin and suberin of decaying leaves, needles and roots Inferences from the initial decomposition of bound fatty acids. <i>Organic Geochemistry</i> , 2016 , 95, 81-92	3.1	42	
90	Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile. <i>Catena</i> , 2018 , 170, 335-355	5.8	42	
89	Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia. <i>European Journal of Soil Science</i> , 2015 , 66, 722-734	3.4	42	
88	Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. <i>Geoderma</i> , 2020 , 357, 113974	6.7	42	
87	Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. <i>Scientific Reports</i> , 2018 , 8, 3367	4.9	40	
86	Correlative Imaging Reveals Holistic View of Soil Microenvironments. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 829-837	10.3	39	
85	Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil. <i>Environmental Science & Environmental Science & Environm</i>	10.3	36	
84	Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth. <i>Scientific Reports</i> , 2017 , 7, 3203	4.9	36	
83	Bioavailability and isotopic composition of CO2 released from incubated soil organic matter fractions. <i>Soil Biology and Biochemistry</i> , 2014 , 69, 168-178	7.5	35	
82	Microscale soil structures foster organic matter stabilization in permafrost soils. <i>Geoderma</i> , 2017 , 293, 44-53	6.7	33	

81	Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. <i>Communications Biology</i> , 2019 , 2, 441	6.7	33
80	Growth and physiology of olive pioneer and fibrous roots exposed to soil moisture deficits. <i>Tree Physiology</i> , 2011 , 31, 1228-37	4.2	31
79	Rapid soil formation after glacial retreat shaped by spatial patterns of organic matter accrual in microaggregates. <i>Global Change Biology</i> , 2018 , 24, 1637-1650	11.4	31
78	Particulate organic matter as a functional soil component for persistent soil organic carbon. <i>Nature Communications</i> , 2021 , 12, 4115	17.4	31
77	Soil Aggregate Destruction by Ultrasonication Increases Soil Organic Matter Mineralization and Mobility. <i>Soil Science Society of America Journal</i> , 2012 , 76, 1634-1643	2.5	29
76	Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech (Fagus sylvatica L.) trees. <i>Plant and Soil</i> , 2009 , 323, 111-123	4.2	28
75	Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. <i>Nature Communications</i> , 2020 , 11, 6329	17.4	25
74	Active layer monitoring at CALM-S site near J.G.Mendel Station, James Ross Island, eastern Antarctic Peninsula. <i>Science of the Total Environment</i> , 2017 , 601-602, 987-997	10.2	24
73	Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition. <i>Soil Biology and Biochemistry</i> , 2020 , 147, 107841	7.5	22
72	A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition. <i>Organic Geochemistry</i> , 2017 , 112, 177-186	3.1	22
71	Urban waste composts enhance OC and N stocks after long-term amendment but do not alter organic matter composition. <i>Agriculture, Ecosystems and Environment</i> , 2016 , 223, 211-222	5.7	22
70	Earthworm Cast Formation and Development: A Shift From Plant Litter to Mineral Associated Organic Matter. <i>Frontiers in Environmental Science</i> , 2019 , 7,	4.8	21
69	Phosphorus nutrition of Populus chanescens reflects adaptation to high P-availability in the soil. <i>Tree Physiology</i> , 2018 , 38, 6-24	4.2	21
68	Pyrogenic Carbon Contributes Substantially to Carbon Storage in Intact and Degraded Northern Peatlands. <i>Land Degradation and Development</i> , 2018 , 29, 2082-2091	4.4	21
67	Substitution of mineral fertilizers with biogas digestate plus biochar increases physically stabilized soil carbon but not crop biomass in a field trial. <i>Science of the Total Environment</i> , 2019 , 680, 181-189	10.2	19
66	Insights into Carbon Metabolism Provided by Fluorescence Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	19
65	What controls the concentration of various aliphatic lipids in soil?. <i>Soil Biology and Biochemistry</i> , 2013 , 63, 14-17	7.5	19
64	Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. <i>Catena</i> , 2014 , 113, 202-212	5.8	17

(2021-2020)

63	Subsoil organo-mineral associations under contrasting climate conditions. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 270, 244-263	5.5	17	
62	Detritivore conversion of litter into faeces accelerates organic matter turnover. <i>Communications Biology</i> , 2020 , 3, 660	6.7	17	
61	Fungi and bacteria respond differently to changing environmental conditions within a soil profile. <i>Soil Biology and Biochemistry</i> , 2019 , 137, 107543	7.5	16	
60	A de novo-designed antimicrobial peptide with activity against multiresistant Staphylococcus aureus acting on RsbW kinase. <i>FASEB Journal</i> , 2013 , 27, 4476-88	0.9	16	
59	Carbonate ooids of the Mesoarchaean Pongola Supergroup, South Africa. <i>Geobiology</i> , 2017 , 15, 750-76	664.3	16	
58	Site conditions and vegetation determine phosphorus and sulfur speciation in soils of Antarctica. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 246, 339-362	5.5	15	
57	Soil texture affects the coupling of litter decomposition and soil organic matter formation. <i>Soil Biology and Biochemistry</i> , 2021 , 159, 108302	7.5	15	
56	Differences in labile soil organic matter explain potential denitrification and denitrifying communities in a long-term fertilization experiment. <i>Applied Soil Ecology</i> , 2020 , 153, 103630	5	13	
55	Archaeal and bacterial communities across a chronosequence of drained lake basins in Arctic Alaska. <i>Scientific Reports</i> , 2015 , 5, 18165	4.9	13	
54	Analysing the role of soil properties, initial biomass and ozone on observed plant growth variability in a lysimeter study. <i>Plant and Soil</i> , 2009 , 323, 125-141	4.2	13	
53	From fibrous plant residues to mineral-associated organic carbon (the fate of organic matter in Arctic permafrost soils. <i>Biogeosciences</i> , 2020 , 17, 3367-3383	4.6	12	
52	Methods for visualising active microbial benzene degraders in in situ microcosms. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 957-68	5.7	11	
51	Fast accrual of C and N in soil organic matter fractions following post-mining reclamation across the USA. <i>Journal of Environmental Management</i> , 2018 , 209, 216-226	7.9	11	
50	Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics. <i>Scientific Reports</i> , 2021 , 11, 5076	4.9	11	
49	Towards the co-ordination of terrestrial ecosystem protocols across European research infrastructures. <i>Ecology and Evolution</i> , 2017 , 7, 3967-3975	2.8	9	
48	Stable-isotope Raman microspectroscopy for the analysis of soil organic matter. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 923-931	4.4	9	
47	CO and carbonate as substrate for the activation of the microbial community in 180 m deep bedrock fracture fluid of Outokumpu Deep Drill Hole, Finland. <i>AIMS Microbiology</i> , 2017 , 3, 846-871	4.5	9	
46	Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. <i>Journal of Ecology</i> , 2021 , 109, 447-458	6	9	

45	Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. <i>Soil Biology and Biochemistry</i> , 2021 , 160, 108347	7.5	9
44	Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region. <i>Biogeosciences</i> , 2019 , 16, 2481-2499	4.6	8
43	Novel Sample Preparation Technique To Improve Spectromicroscopic Analyses of Micrometer-Sized Particles. <i>Environmental Science & Environmental Scienc</i>	10.3	8
42	Enhanced ozone exposure of European beech (Fagus sylvatica) stimulates nitrogen mobilization from leaf litter and nitrogen accumulation in the soil. <i>Plant Biosystems</i> , 2010 , 144, 537-546	1.6	8
41	Effects of land-use change on chemical composition of soil organic matter in tropical lowland Bolivia. <i>Grassland Science</i> , 2009 , 55, 104-109	1.3	8
40	Dark microbial CO fixation in temperate forest soils increases with CO concentration. <i>Global Change Biology</i> , 2020 , 26, 1926-1935	11.4	8
39	Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer. <i>Environmental Science & amp; Technology</i> , 2021 , 55, 9876-9884	10.3	8
38	Comparing the physiochemical parameters of three celluloses reveals new insights into substrate suitability for fungal enzyme production. <i>Fungal Biology and Biotechnology</i> , 2017 , 4, 10	7.5	7
37	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. <i>Critical Reviews in Environmental Science and Technology</i> ,1-17	11.1	7
36	Pterodactyloid pterosaur bones from Cretaceous deposits of the Antarctic Peninsula. <i>Anais Da Academia Brasileira De Ciencias</i> , 2019 , 91, e20191300	1.4	7
35	Biogeochemical cycling of phosphorus in subsoils of temperate forest ecosystems. <i>Biogeochemistry</i> , 2020 , 150, 313-328	3.8	7
34	Legacy of Rice Roots as Encoded in Distinctive Microsites of Oxides, Silicates, and Organic Matter 2017 , 1, 2		6
33	A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils@hanging the paradigm. <i>Environmental Research Letters</i> , 2022 , 17, 013004	6.2	6
32	Organic matter composition and stabilization in a polygonal tundra soil of the Lena-Delta		6
31	Permafrost and active layer research on James Ross Island: An overview. <i>Czech Polar Reports</i> , 2019 , 9, 20-36	0.8	6
30	Replicability of aggregate disruption by sonication inter-laboratory test using three different soils from Germany. <i>Journal of Plant Nutrition and Soil Science</i> , 2018 , 181, 894-904	2.3	6
29	Root-induced fungal growth triggers macroaggregation in forest subsoils. <i>Soil Biology and Biochemistry</i> , 2021 , 157, 108244	7·5	5
28	4D Surface Reconstructions to Study Microscale Structures and Functions in Soil Biogeochemistry. <i>Environmental Science & Environmental Science & Envi</i>	10.3	5

(2021-2019)

27	Soil Organic Matter and Phosphate Sorption on Natural and Synthetic Fe Oxides under in Situ Conditions. <i>Environmental Science & Environmental Science</i>	10.3	4
26	Performance of base hydrolysis methods in extracting bound lipids from plant material, soils, and sediments. <i>Organic Geochemistry</i> , 2017 , 113, 97-104	3.1	4
25	Permafrost soil complexity evaluated by laboratory imaging Vis-NIR spectroscopy. <i>European Journal of Soil Science</i> , 2021 , 72, 114-119	3.4	4
24	Probing the nature of soil organic matter. Critical Reviews in Environmental Science and Technology,1-22	11.1	4
23	The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. <i>Biogeochemistry</i> , 2021 , 156, 401	3.8	4
22	Andosol clay re-aggregation observed at the microscale during physical organic matter fractionation. <i>Journal of Plant Nutrition and Soil Science</i> , 2019 , 182, 145-148	2.3	3
21	High resistance of soils to short-term re-grazing in a long-term abandoned alpine pasture. <i>Agriculture, Ecosystems and Environment</i> , 2020 , 300, 107008	5.7	3
20	Characterization of Biogeochemical Processes at the Microscale 2017 , 193-212		3
19	How vegetation patches drive soil development and organic matter formation on polar islands. <i>Geoderma Regional</i> , 2021 , 27, e00429	2.7	3
18	Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime <i>Nature Communications</i> , 2022 , 13, 2098	17.4	3
17	Combination of energy limitation and sorption capacity explains 14C depth gradients. <i>Soil Biology and Biochemistry</i> , 2020 , 148, 107912	7.5	2
16	Imaging of Al/Fe ratios in synthetic Al-goethite revealed by nanoscale secondary ion mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2018 , 32, 619-628	2.2	2
15	Linking rhizosphere processes across scales: Opinion. <i>Plant and Soil</i> ,1	4.2	2
14	From fibrous plant residues to mineral-associated organic carbon the fate of organic matter in Arctic permafrost soils		2
13	Association of fresh low-molecular-weight organic compounds with clay-sized mineral fraction in soils of different organic carbon loading. <i>Geoderma</i> , 2022 , 409, 115657	6.7	2
12	Which are important soil parameters influencing the spatial heterogeneity of ¹⁴ C in soil organic matter?		2
11	Supplementary material to " Which are important soil parameters influencing the spatial heterogeneity of < sup> 14< /sup> C in soil organic matter? & quot;		2
10	Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon. <i>Soil</i> , 2021 , 7, 347-362	5.8	2

9	Collecting in situ precipitated iron oxides in their natural soil environment. <i>Journal of Plant Nutrition and Soil Science</i> , 2013 , 176, 497-499	2.3	1
8	Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils. <i>Reviews in Environmental Science and Biotechnology</i> , 2022 , 21, 53-74	13.9	1
7	Functional complexity explains the depth-dependent response of organic matter to liming at the nanometer scale. <i>Geoderma</i> , 2022 , 408, 115560	6.7	1
6	Forest litter constraints on the pathways controlling soil organic matter formation. <i>Soil Biology and Biochemistry</i> , 2021 , 163, 108447	7.5	1
5	Contribution of Particulate and Mineral-Associated Organic Matter to Potential Denitrification of Agricultural Soils. <i>Frontiers in Environmental Science</i> ,9,	4.8	1
4	Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. <i>Soil Biology and Biochemistry</i> , 2022 , 168, 108634	7.5	1
3	River Organic Carbon Fluxes Modulated by Hydrodynamic Sorting of Particulate Organic Matter. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	О
2	Cryoturbation impacts iron-organic carbon associations along a permafrost soil chronosequence in northern Alaska. <i>Geoderma</i> , 2022 , 413, 115738	6.7	O
1	Bypass and hyperbole in soil science: A perspective from the next generation of soil scientists. European Journal of Soil Science, 2021, 72, 31-34	3.4	