
Heven Sze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9153063/publications.pdf Version: 2024-02-01

HEVEN SZI

#	Article	IF	CITATIONS
1	Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiology, 2001, 126, 1646-1667.	2.3	1,110
2	Energization of Plant Cell Membranes by H+-Pumping ATPases: Regulation and Biosynthesis. Plant Cell, 1999, 11, 677-689.	3.1	433
3	DIVERSITY ANDREGULATION OFPLANTCa2+PUMPS: Insights from Expression in Yeast. Annual Review of Plant Biology, 2000, 51, 433-462.	14.2	266
4	Plant Endomembrane Dynamics: Studies of K ⁺ /H ⁺ Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. Plant Physiology, 2018, 177, 875-895.	2.3	198
5	Conserved and Diversified Gene Families of Monovalent Cation/H+ Antiporters from Algae to Flowering Plants. Frontiers in Plant Science, 2012, 3, 25.	1.7	192
6	A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends in Plant Science, 2002, 7, 157-161.	4.3	189
7	Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics. Plant Physiology, 2006, 140, 1151-1168.	2.3	171
8	Expression Patterns of a Novel AtCHX Gene Family Highlight Potential Roles in Osmotic Adjustment and K+ Homeostasis in Pollen Development. Plant Physiology, 2004, 136, 2532-2547.	2.3	148
9	Pollen Tubes Lacking a Pair of K+ Transporters Fail to Target Ovules in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 81-93.	3.1	148
10	Anion-Sensitive, H ⁺ -Pumping ATPase in Membrane Vesicles from Oat Roots. Plant Physiology, 1983, 71, 610-617.	2.3	142
11	Anion-Sensitive, H ⁺ -Pumping ATPase of Oat Roots. Plant Physiology, 1984, 76, 490-497.	2.3	121
12	A Distinct Endosomal Ca2+/Mn2+ Pump Affects Root Growth through the Secretory Process Â. Plant Physiology, 2008, 147, 1675-1689.	2.3	103
13	Participation of Endomembrane Cation/H+ Exchanger AtCHX20 in Osmoregulation of Guard Cells. Plant Physiology, 2007, 144, 82-93.	2.3	95
14	AtCHX13 Is a Plasma Membrane K+ Transporter Â. Plant Physiology, 2008, 148, 796-807.	2.3	94
15	Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chloroplast transit peptide. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2362-2371.	1.4	81
16	Subunit Composition and Organization of the Vacuolar H+-ATPase from Oat Roots. Plant Physiology, 1992, 99, 170-179.	2.3	75
17	Plant-Specific Cation/H+ Exchanger 17 and Its Homologs Are Endomembrane K+ Transporters with Roles in Protein Sorting. Journal of Biological Chemistry, 2011, 286, 33931-33941.	1.6	74
18	A High-Affinity Ca2+ Pump, ECA1, from the Endoplasmic Reticulum Is Inhibited by Cyclopiazonic Acid but Not by Thapsigargin. Plant Physiology, 1998, 118, 817-825.	2.3	73

Heven Sze

#	Article	IF	CITATIONS
19	Calmodulin Activation of an Endoplasmic Reticulum-Located Calcium Pump Involves an Interaction with the N-Terminal Autoinhibitory Domain. Plant Physiology, 2000, 122, 157-168.	2.3	71
20	Potential-Dependent Anion Transport in Tonoplast Vesicles from Oat Roots. Plant Physiology, 1987, 83, 483-489.	2.3	68
21	Envelope K ⁺ /H ⁺ Antiporters AtKEA1 and AtKEA2 Function in Plastid Development. Plant Physiology, 2016, 172, 441-449.	2.3	58
22	K+ Transporter AtCHX17 with Its Hydrophilic C Tail Localizes to Membranes of the Secretory/Endocytic System: Role in Reproduction and Seed Set. Molecular Plant, 2013, 6, 1226-1246.	3.9	35
23	A 100 kDa polypeptide associates with the Vomembrane sector but not with the active oat vacuolar H+â€ATPase, suggesting a role in assembly. Plant Journal, 1999, 17, 19-30.	2.8	25
24	Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embryo development. Journal of Experimental Botany, 2017, 68, 3165-3178.	2.4	24
25	Protein architecture and core residues in unwound α-helices provide insights to the transport function of plant AtCHX17. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1983-1998.	1.4	16
26	Genomic and Molecular Analyses of Transporters in the Male Gametophyte. , 0, , 71-93.		11
27	OUP accepted manuscript. Plant Physiology, 2021, , .	2.3	9
28	Linking the evolution of plant transporters to their functions. Frontiers in Plant Science, 2014, 4, 547.	1.7	8