Noriyuki Taoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9152979/publications.pdf

Version: 2024-02-01

257101 276539 2,168 118 24 41 citations h-index g-index papers 118 118 118 1752 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Mobility Ge p- and n-MOSFETs With 0.7-nm EOT Using $\frac{H_0}{2}hbox{Al}_{2}hbox{O}_{3}/hbox{GeO}_{x}/hbox{Ge}$ Gate Stacks Fabricated by Plasma Postoxidation. IEEE Transactions on Electron Devices, 2013, 60, 927-934.	1.6	193
2	$\label{limited High-Mobility GepMOSFET With 1-nm EOT $hbox{Al}_{2} hbox{O}_{3}/hbox{GeO}_{x}/hbox{Ge}$ Gate Stack Fabricated by Plasma Post Oxidation. IEEE Transactions on Electron Devices, 2012, 59, 335-341. }$	1.6	168
3	Growth and applications of GeSn-related group-IV semiconductor materials. Science and Technology of Advanced Materials, 2015, 16, 043502.	2.8	144
4	Modulation of NiGeâ [•] Ge Schottky barrier height by sulfur segregation during Ni germanidation. Applied Physics Letters, 2006, 88, 152115.	1.5	85
5	High hole mobility tin-doped polycrystalline germanium layers formed on insulating substrates by low-temperature solid-phase crystallization. Applied Physics Letters, 2015, 107, .	1.5	64
6	Sub-10-nm Extremely Thin Body InGaAs-on-Insulator MOSFETs on Si Wafers With Ultrathin \$hbox{Al}_{2}hbox{O}_{3}\$ Buried Oxide Layers. IEEE Electron Device Letters, 2011, 32, 1218-1220.	2.2	60
7	Pure-edge dislocation network for strain-relaxed SiGeâ [•] Si(001) systems. Applied Physics Letters, 2005, 86, 221916.	1.5	58
8	Self-Aligned Metal Source/Drain In _{<i>x</i>} Ga _{1-<i>x</i>} As n-Metal–Oxide–Semiconductor Field-Effect Transistors Using Ni–InGaAs Alloy. Applied Physics Express, 2011, 4, 024201.	1.1	53
9	Effects of Si passivation on Ge metal-insulator-semiconductor interface properties and inversion-layer hole mobility. Applied Physics Letters, 2008, 92, .	1.5	45
10	$1-nm-thick\ EOT\ high\ mobility\ Ge\ n-\ and\ p-MOSFETs\ with\ ultrathin\ GeO\< inf\> x\< /inf\> /Ge\ MOS\ interfaces\ fabricated\ by\ plasma\ post\ oxidation.\ ,\ 2011,\ ,\ .$		41
11	Reduction in interface state density of Al2O3/InGaAs metal-oxide-semiconductor interfaces by InGaAs surface nitridation. Journal of Applied Physics, 2012, 112, 073702.	1.1	41
12	Sub-60-nm Extremely Thin Body $m \ln_{x}\$ Ga $_{1-x}\$ As $_{0-x}\$ On-Insulator MOSFETs on Si With Ni-InGaAs Metal S/D and MOS Interface Buffer Engineering and Its Scalability. IEEE Transactions on Electron Devices, 2013, 60, 2512-2517.	1.6	40
13	Impact of atomic layer deposition temperature on HfO2/InGaAs metal-oxide-semiconductor interface properties. Journal of Applied Physics, 2012, 112, .	1.1	38
14	Large grain growth of Ge-rich Ge1â^'xSnx(x â‰^ 0.02) on insulating surfaces using pulsed laser annealing in flowing water. Applied Physics Letters, 2014, 104, 061901.	, 1.5	37
15	Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers. Applied Physics Letters, 2015, 106, .	1.5	33
16	Suppression of ALD-Induced Degradation of Ge MOS Interface Properties by Low Power Plasma Nitridation of GeO2. Journal of the Electrochemical Society, 2011, 158, G178.	1.3	30
17	High Performance Extremely Thin Body InGaAs-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors on Si Substrates with Ni–InGaAs Metal Source/Drain. Applied Physics Express, 2011, 4, 114201.	1.1	28
18	Experimental Study on Electron Mobility in In _x Ga _{1-x} As-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistors With In Content Modulation and MOS Interface Buffer Engineering. IEEE Nanotechnology Magazine, 2013, 12, 621-628.	1.1	28

#	Article	IF	CITATIONS
19	Liquid-Sn-driven lateral growth of poly-GeSn on insulator assisted by surface oxide layer. Applied Physics Letters, 2013, 103, .	1.5	28
20	Local strain in SiGe/Si heterostructures analyzed by X-ray microdiffraction. Thin Solid Films, 2006, 508, 128-131.	0.8	27
21	Impact of Fermi level pinning inside conduction band on electron mobility in InGaAs metal-oxide-semiconductor field-effect transistors. Applied Physics Letters, 2013, 103, .	1.5	27
22	III–V/Ge High Mobility Channel Integration of InGaAs n-Channel and Ge p-Channel Metal–Oxide–Semiconductor Field-Effect Transistors with Self-Aligned Ni-Based Metal Source/Drain Using Direct Wafer Bonding. Applied Physics Express, 2012, 5, 076501.	1.1	26
23	Electron Mobility Enhancement of Extremely Thin Body In\$_{0.7}\$Ga\$_{0.3}\$As-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors on Si Substrates by Metal–Oxide–Semiconductor Interface Buffer Layers. Applied Physics Express, 2012, 5, 014201.	1.1	26
24	Highly strained-SiGe-on-insulator p-channel metal-oxide-semiconductor field-effective transistors fabricated by applying Ge condensation technique to strained-Si-on-insulator substrates. Applied Physics Letters, $2011, 99, \ldots$	1.5	25
25	Impact of Fermi Level Pinning Due to Interface Traps Inside the Conduction Band on the Inversion-Layer Mobility in \$hbox{In}_{x}hbox{Ga}_{1 - x}hbox{As}\$ Metal–Oxide–Semiconductor Field Effect Transistors. IEEE Transactions on Device and Materials Reliability, 2013, 13, 456-462.	1.5	25
26	Planar-type In0.53Ga0.47As channel band-to-band tunneling metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 2011, 110, .	1.1	24
27	Strained In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with epitaxial based biaxial strain. Applied Physics Letters, 2012, 100, 193510.	1.5	23
28	Development of epitaxial growth technology for Ge1â^'Sn alloy and study of its properties for Ge nanoelectronics. Solid-State Electronics, 2013, 83, 82-86.	0.8	23
29	Epitaxial formation and electrical properties of Ni germanide/Ge(110) contacts. Thin Solid Films, 2014, 557, 84-89.	0.8	22
30	Stabilized formation of tetragonal ZrO2 thin film with high permittivity. Thin Solid Films, 2014, 557, 192-196.	0.8	22
31	Self-aligned metal source/drain InP n-metal-oxide-semiconductor field-effect transistors using Ni–InP metallic alloy. Applied Physics Letters, 2011, 98, 243501.	1.5	21
32	Effects of ambient conditions in thermal treatment for Ge(0 0 1) surfaces on Ge–MIS interface properties. Semiconductor Science and Technology, 2007, 22, S114-S117.	1.0	20
33	Physical origins of mobility enhancement of Ge p-channel metal-insulator-semiconductor field effect transistors with Si passivation layers. Journal of Applied Physics, 2010, 108, 104511.	1.1	20
34	Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation. Applied Physics Letters, 2015, 106, .	1.5	20
35	Formation of high-quality oxide/Ge1â^xSnx interface with high surface Sn content by controlling Sn migration. Applied Physics Letters, 2014, 105, 122103.	1.5	19
36	Nature of interface traps in Ge metal-insulator-semiconductor structures with GeO2 interfacial layers. Journal of Applied Physics, 2011, 109, .	1.1	18

#	Article	IF	Citations
37	Initial Processes of Atomic Layer Deposition of Al2O3 on InGaAs: Interface Formation Mechanisms and Impact on Metal-Insulator-Semiconductor Device Performance. Materials, 2012, 5, 404-414.	1.3	18
38	Growth and characterization of strain-relaxed SiGe buffer layers on Si(001) substrates with pure-edge misfit dislocations. Materials Science in Semiconductor Processing, 2005, 8, 131-135.	1.9	17
39	Strain-relaxation mechanisms of SiGe layers formed by two-step growth on Si(0 0 1) substrates. Applied Surface Science, 2004, 224, 104-107.	3.1	16
40	AC response analysis of C–V curves and quantitative analysis of conductance curves in Al2O3/InP interfaces. Microelectronic Engineering, 2011, 88, 1087-1090.	1.1	16
41	Electrical and optical properties improvement of GeSn layers formed at high temperature under well-controlled Sn migration. Materials Science in Semiconductor Processing, 2017, 57, 48-53.	1.9	16
42	Impacts of oxidants in atomic layer deposition method on Al ₂ O ₃ /GaN interface properties. Japanese Journal of Applied Physics, 2018, 57, 01AD04.	0.8	16
43	Impacts of AlGeO formation by post thermal oxidation of Al2O3/Ge structure on interfacial properties. Thin Solid Films, 2014, 557, 282-287.	0.8	15
44	Understanding of frequency dispersion in C-V curves of metal-oxide-semiconductor capacitor with wide-bandgap semiconductor. Microelectronic Engineering, 2017, 178, 182-185.	1.1	15
45	Importance of minority carrier response in accurate characterization of Ge metal-insulator-semiconductor interface traps. Journal of Applied Physics, 2009, 106, .	1.1	14
46	Accurate evaluation of Ge metalâ€"insulatorâ€"semiconductor interface properties. Journal of Applied Physics, 2011, 110, .	1.1	14
47	(Invited) MOS Interface Control Technologies for III-V/Ge Channel MOSFETs. ECS Transactions, 2011, 41, 3-20.	0.3	14
48	Influence of Ge substrate orientation on crystalline structures of Ge1â^'Sn epitaxial layers. Thin Solid Films, 2014, 557, 159-163.	0.8	14
49	Epitaxial growth and crystalline properties of $Ge1\hat{a}^2\hat{a}^3$ Si Sn on $Ge(0\ 0\ 1)$ substrates. Solid-State Electronics, 2015, 110, 49-53.	0.8	14
50	High thermal stability of abrupt SiO ₂ /GaN interface with low interface state density. Japanese Journal of Applied Physics, 2018, 57, 04FG11.	0.8	14
51	Dislocation structures and strain-relaxation in SiGe buffer layers on Si $(0\ 0\ 1)$ substrates with an ultra-thin Ge interlayer. Applied Surface Science, 2004, 224, 108-112.	3.1	13
52	In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with self-aligned metal source/drain using Co-InGaAs alloys. Applied Physics Letters, 2012, 100, .	1.5	12
53	Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al2O3/Ge structure. Applied Physics Letters, 2013, 103, .	1.5	12
54	Reduction of Schottky barrier height for n-type Ge contact by using Sn electrode. Japanese Journal of Applied Physics, 2014, 53, 04EA06.	0.8	12

#	Article	IF	CITATIONS
55	Ion-Implanted Impurity Profiles in Ge Substrates and Amorphous Layer Thickness Formed by Ion Implantation. IEEE Transactions on Electron Devices, 2009, 56, 627-633.	1.6	11
56	Epitaxial growth and anisotropic strain relaxation of Ge1â°'xSnx layers on Ge(110) substrates. Solid-State Electronics, 2013, 83, 71-75.	0.8	11
57	Effect of Sn atoms on incorporation of vacancies in epitaxial Ge _{1â^3< sub><i>_{x< sub>}</i>Sn<i>_{x< sub>}</i>Physics Express, 2014, 7, 021302.}	1.1	11
58	Characterization of locally strained Ge1 \hat{a}° (i)×(i)×Sn(i)×(li)/Ge fine structures by synchrotron X-ray microdiffraction. Applied Physics Letters, 2015, 106, .	1.5	11
59	Sn migration control at high temperature due to high deposition speed for forming high-quality GeSn layer. Applied Physics Express, 2016, 9, 031201.	1.1	11
60	SiO ₂ /GaN interfaces with low defect densities and high breakdown electric fields formed by plasma-enhanced atomic layer deposition. Japanese Journal of Applied Physics, 2022, 61, SC1073.	0.8	11
61	Interfacial Control and Electrical Properties of Ge MOS structures. ECS Transactions, 2009, 19, 67-85.	0.3	10
62	Correlation between channel mobility improvements and negative V<inf>th</inf> shifts in Ill& $\#x2013;V$ MISFETs: Dipole fluctuation as new scattering mechanism., 2010,,.		10
63	Ge-rich SiGe-on-insulator for waveguide optical modulator application fabricated by Ge condensation and SiGe regrowth. Optics Express, 2013, 21, 19615.	1.7	10
64	Robustness of Sn precipitation during thermal oxidation of Ge _{1â^²} <i>_x</i> Sn <i>_x</i> Physics, 2014, 53, 08LD04.	0.8	10
65	Epitaxial Ge1-xSnx Layers Grown by Metal-Organic Chemical Vapor Deposition Using Tertiary-butyl-germane and Tri-butyl-vinyl-tin. ECS Solid State Letters, 2015, 4, P59-P61.	1.4	10
66	Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface. Scientific Reports, 2018, 8, 1391.	1.6	10
67	Publisher's Note: "Impact of hydrogen surfactant on crystallinity of Ge _{1â^'} <i>_x</i> Sn <i>_x</i> epitaxial layers― Japanese Journal of Applied Physics, 2015, 54, 059202.	0.8	10
68	Interfacial Reaction Mechanisms in Al ₂ O ₃ /Ge Structure by Oxygen Radical Process. Japanese Journal of Applied Physics, 2013, 52, 04CA08.	0.8	9
69	Interface properties of Al ₂ O ₃ /Ge structures with thin Ge oxide interfacial layer formed by pulsed metal organic chemical vapor deposition. Japanese Journal of Applied Physics, 2014, 53, 08LD03.	0.8	9
70	Photoluminescence of phosphorous doped Ge on Si (100). Materials Science in Semiconductor Processing, 2017, 70, 111-116.	1.9	8
71	Impact of hydrogen surfactant on crystallinity of Ge1â^xSnxepitaxial layers. Japanese Journal of Applied Physics, 2015, 54, 04DH15.	0.8	7
72	Effect of Sn on crystallinity and electronic property of low temperature grown polycrystalline-Si1â^'â^'Ge Sn layers on SiO2. Solid-State Electronics, 2015, 110, 54-58.	0.8	7

#	Article	IF	Citations
73	Impact of surface orientation on (100), (111)A, and (111)B InGaAs surfaces with In content of 0.53 and 0.70 and on their Al2O3/InGaAs metal-oxide-semiconductor interface properties. Applied Physics Letters, 2016, 109, 182111.	1.5	7
74	Effects of additional oxidation after Ge condensation on electrical properties of germanium-on-insulator p-channel MOSFETs. Solid-State Electronics, 2016, 117, 77-87.	0.8	7
75	Electrical and optical properties improvement of GeSn layers formed at high temperature under well-controlled Sn migration. Materials Science in Semiconductor Processing, 2017, 70, 139-144.	1.9	7
76	Control of misfit dislocations in strain-relaxed SiGe buffer layers on SOI substrates. Thin Solid Films, 2006, 508, 147-151.	0.8	6
77	Analysis for positions of Sn atoms in epitaxial Ge1 \hat{a} °xSnx film in low temperature depositions. Thin Solid Films, 2014, 557, 173-176.	0.8	6
78	Formation and characterization of locally strained Ge1â^'Sn /Ge microstructures. Thin Solid Films, 2014, 557, 164-168.	0.8	6
79	Oxygen and germanium migration at low temperature influenced by the thermodynamic nature of the materials used in germanium metal-insulator-semiconductor structures. Applied Physics Letters, 2015, 107, .	1.5	6
80	Analysis of Microstructures in SiGe Buffer Layers on Silicon-on-Insulator Substrates. Japanese Journal of Applied Physics, 2005, 44, 7356-7363.	0.8	5
81	Formation, crystalline structure, and optical properties of Ge1â^'xâ^'ySnxCyternary alloy layers. Japanese Journal of Applied Physics, 2015, 54, 04DH08.	0.8	5
82	Formation of chemically stable GeO2 on the Ge surface with pulsed metal–organic chemical vapor deposition. Applied Physics Letters, 2015, 106, 062107.	1.5	5
83	Influence of interface traps inside the conduction band on the capacitance–voltage characteristics of InGaAs metal–oxide–semiconductor capacitors. Applied Physics Express, 2016, 9, 111202.	1.1	5
84	Energy band structure and electrical properties of Ga-oxide/GaN interface formed by remote oxygen plasma. Japanese Journal of Applied Physics, 2018, 57, 06KA05.	0.8	5
85	Impacts of Surface Roughness Reduction in (110) Si Substrates Fabricated by High-Temperature Annealing on Electron Mobility in n-Channel Metal–Oxide–Semiconductor Field-Effect Transistors on (110) Si. Japanese Journal of Applied Physics, 2013, 52, 04CC26.	0.8	4
86	Interaction of Sn atoms with defects introduced by ion implantation in Ge substrate. Journal of Applied Physics, 2014, 115, .	1.1	4
87	Formation and crystalline structure of Ni silicides on Si(110) substrate. Japanese Journal of Applied Physics, 2014, 53, 05GA12.	0.8	4
88	Importance of control of oxidant partial pressure on structural and electrical properties of Pr-oxide films. Thin Solid Films, 2014, 557, 276-281.	0.8	4
89	Experimental evidence of the existence of multiple charged states at Al2O3/GaN interfaces. Semiconductor Science and Technology, 2019, 34, 025009.	1.0	4
90	Impact of byproducts formed on a 4H–SiC surface on interface state density of Al2O3/4H–SiC(0001) gate stacks. Applied Physics Letters, 2020, 116, 222104.	1.5	4

#	Article	IF	Citations
91	Impact of gate electrode formation process on Al2O3/GaN interface properties and channel mobility. Applied Physics Express, 2021, 14, 081001.	1.1	4
92	Effect of Ge Metal–Insulator–Semiconductor Interfacial Layers on Interface Trap Density near the Conduction Band Edge. Japanese Journal of Applied Physics, 2010, 49, 04DA09.	0.8	3
93	(Invited) Epitaxial Growth of GeSn Layers on (001), (110), and (111) Si and Ge Substrates. ECS Transactions, 2014, 64, 793-799.	0.3	3
94	Characterization of crystalline structures of SiGe substrate formed by traveling liquidus-zone method for devices with Ge/SiGe structures. Thin Solid Films, 2014, 557, 129-134.	0.8	3
95	Effects of nitridation for SiO2/SiC interface on defect properties near the conduction band edge. Japanese Journal of Applied Physics, 2016, 55, 04ER13.	0.8	3
96	Defect and dislocation structures in low-temperature-grown Ge and Gelâ^'Sn epitaxial layers on Si(110) substrates. Thin Solid Films, 2016, 598, 72-81.	0.8	3
97	Interface properties of SiO ₂ /GaN structures formed by chemical vapor deposition with remote oxygen plasma mixed with Ar or He. Japanese Journal of Applied Physics, 2018, 57, 06KA01.	0.8	3
98	Impacts of Al ₂ O ₃ /GaN interface properties on the screening effect and carrier mobility in an inversion layer. Japanese Journal of Applied Physics, 2019, 58, SAAF03.	0.8	3
99	Effect of gate metal on chemical bonding state in metal/Pr-oxide/Ge gate stack structure. Solid-State Electronics, 2013, 83, 56-60.	0.8	2
100	Doppler Broadening Spectroscopy of Positron Annihilation near Ge and Si (001) Single Crystal Surfaces. ECS Solid State Letters, 2013, 2, P89-P90.	1.4	2
101	Formation of high-quality Ge1 \hat{a} °xSnx layer on Ge(110) substrate with strain-induced confinement of stacking faults at Ge1 \hat{a} °xSnx/Ge interfaces. Applied Physics Express, 2014, 7, 061301.	1.1	2
102	Fabrication of Ge-rich SiGe-On-insulator waveguide for optical modulator., 2011,,.		1
103	Importance of Ge surface oxidation with high oxidation rate in obtaining low interface state density at oxide/Ge interfaces. Japanese Journal of Applied Physics, 2014, 53, 08LD02.	0.8	1
104	Effect of thermal cleaning on formation of epitaxial Ni germanide layer on Ge(110) substrate. Japanese Journal of Applied Physics, 2014, 53, 05GA06.	0.8	1
105	Impact of Minorty Carrier Response on Characterization of Ge MIS Interface Traps. ECS Transactions, 2009, 19, 117-128.	0.3	0
106	Highly-strained SGOI p-channel MOSFETs fabricated by applying Ge condensation technique to strained-SOI substrates. , $2011, , .$		0
107	Effect of Gate Metal Electrode on Chemical Bonding State in Metal/Pr-Oxide/Ge Gate Stack Structure. , 2012, , .		0
108	Material Properties and Applications of Ge1-xSnx Alloys for Ge Nanoelectronics. , 2012, , .		0

#	Article	IF	CITATIONS
109	Epitaxial Growth and Anisotropic Strain Relaxation of Ge1-xSnx Layers on Ge(110) Substrates. , 2012, , .		0
110	Effects of Light Exposure during Plasma Processing on Electrical Properties of GeO2/Ge Structures. Japanese Journal of Applied Physics, 2013, 52, 01AC04.	0.8	0
111	Characterization of Local Strain Structures in Heteroepitaxial Ge1-xSnx/Ge Microstructures by Using Microdiffraction Method. ECS Transactions, 2013, 58, 185-192.	0.3	0
112	Crystal growth of Sn-related group-IV alloy thin films for advanced Si nanoelectronics. , 2014, , .		0
113	Impact of crystalline structure on electrical property of NiGe/Ge contact., 2014,,.		0
114	$Formation \ and \ electrical \ properties \ of \ metal/Ge < inf > 1\& \#x2212; x < / inf > Sn < inf > x < / inf > contacts. \ , \ 2014, \ , \ .$		0
115	Dislocation Morphology and Crystalline Mosaicity in Strain-Relaxed SiGe Buffer Layers on SOI. IEEJ Transactions on Electronics, Information and Systems, 2006, 126, 1083-1087.	0.1	O
116	Observation of lattice spacing fluctuation and strain undulation around through-Si vias in wafer-on-wafer structures using X-ray microbeam diffraction. Japanese Journal of Applied Physics, 2014, 53, 05GE03.	0.8	0
117	Control of Insulator/semiconductor Interfaces and Its Electrical Properties. Vacuum and Surface Science, 2018, 61, 384-389.	0.0	0
118	Study on Electron Emission from Phosphorus $\hat{\Gamma}$ -Doped Si-QDs/Undoped Si-QDs Multiple-Stacked Structures. IEICE Transactions on Electronics, 2022, , .	0.3	0