Stefano Ettori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9152813/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Chandra imaging of the complex X-ray core of the Perseus cluster. Monthly Notices of the Royal Astronomical Society, 2000, 318, L65-L68.	1.6	518
2	THE <i>CHANDRA</i> COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2009, 184, 158-171.	3.0	361
3	Systematics in the X-ray cluster mass estimators. Monthly Notices of the Royal Astronomical Society, 2006, 369, 2013-2024.	1.6	257
4	ON THE CONNECTION BETWEEN GIANT RADIO HALOS AND CLUSTER MERGERS. Astrophysical Journal Letters, 2010, 721, L82-L85.	3.0	250
5	Weighing simulated galaxy clusters using lensing and X-ray. Astronomy and Astrophysics, 2010, 514, A93.	2.1	235
6	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A1.	2.1	199
7	Lensing and x-ray mass estimates of clusters (simulations). New Journal of Physics, 2012, 14, 055018.	1.2	190
8	ROSAT PSPC observations of 36 high-luminosity clusters of galaxies: constraints on the gas fraction. Monthly Notices of the Royal Astronomical Society, 1999, 305, 834-848.	1.6	183
9	Scaling laws in X-ray galaxy clusters at redshift betweenÂ0.4 andÂ1.3. Astronomy and Astrophysics, 2004, 417, 13-27.	2.1	178
10	The Great Observatories Origins Deep Survey. Astronomy and Astrophysics, 2005, 434, 53-65.	2.1	175
11	On the iron content in rich nearby clusters of galaxies. Astronomy and Astrophysics, 2004, 419, 7-18.	2.1	167
12	Searching for cool core clusters at high redshift. Astronomy and Astrophysics, 2008, 483, 35-47.	2.1	165
13	REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS. Astrophysical Journal, 2013, 777, 141.	1.6	165
14	Deep inside the core of Abell 1795: theChandraview. Monthly Notices of the Royal Astronomical Society, 2002, 331, 635-648.	1.6	164
15	The Galaxy Cluster Mass Scale and Its Impact on Cosmological Constraints from the Cluster Population. Space Science Reviews, 2019, 215, 1.	3.7	150
16	The cluster gas mass fraction as a cosmological probe: a revised study. Astronomy and Astrophysics, 2009, 501, 61-73.	2.1	148
17	CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the <i>z</i> = 0.44 galaxy cluster MACS J1206.2-0847. Astronomy and Astrophysics, 2013, 558, A1.	2.1	145
18	Baryon census in hydrodynamical simulations of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1487-1502.	1.6	134

#	Article	IF	CITATIONS
19	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	1.2	133
20	Chandrameasurements of the distribution of mass in the luminous lensing cluster Abell 2390. Monthly Notices of the Royal Astronomical Society, 2001, 324, 877-890.	1.6	132
21	Mass profiles and <i>c</i> Ââ~Â <i>M</i> _{DM} relation in X-ray luminous galaxy clusters. Astronomy and Astrophysics, 2010, 524, A68.	2.1	132
22	Mass Profiles of Galaxy Clusters from X-ray Analysis. Space Science Reviews, 2013, 177, 119-154.	3.7	132
23	The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2898-2915.	1.6	131
24	Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample. Astronomy and Astrophysics, 2019, 621, A41.	2.1	128
25	Chandra imaging of the X-ray core of Abell 1795. Monthly Notices of the Royal Astronomical Society, 2001, 321, L33-L36.	1.6	126
26	Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters. Astrophysical Journal, 2018, 854, 167.	1.6	123
27	Gravitating mass profiles of nearby galaxy clusters and relations with X-ray gas temperature, luminosity and mass. Astronomy and Astrophysics, 2002, 391, 841-855.	2.1	120
28	The ATHENA x-ray integral field unit (X-IFU). , 2018, , .		120
29	Chandra constraints on the thermal conduction in the intracluster plasma of A2142. Monthly Notices of the Royal Astronomical Society, 2000, 317, L57-L59.	1.6	119
30	Tracing the evolution in the iron content of the intra-cluster medium. Astronomy and Astrophysics, 2007, 462, 429-442.	2.1	119
31	The gas distribution in the outer regions of galaxy clusters. Astronomy and Astrophysics, 2012, 541, A57.	2.1	116
32	THE MUSIC OF CLASH: PREDICTIONS ON THE CONCENTRATION-MASS RELATION. Astrophysical Journal, 2014, 797, 34.	1.6	115
33	Outskirts of Galaxy Clusters. Space Science Reviews, 2013, 177, 195-245.	3.7	114
34	ChandraandXMM-NewtonObservations of RDCS 1252.9-2927, A Massive Cluster atz=1.24. Astronomical Journal, 2004, 127, 230-238.	1.9	113
35	Testing the connection between the X-ray and submillimetre source populations using Chandra. Monthly Notices of the Royal Astronomical Society, 2000, 315, L8-L12.	1.6	110
36	Non-thermal pressure support in X-COP galaxy clusters. Astronomy and Astrophysics, 2019, 621, A40.	2.1	108

#	Article	IF	CITATIONS
37	CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS. Astrophysical Journal, 2014, 794, 136.	1.6	105
38	Hydrostatic mass profiles in X-COP galaxy clusters. Astronomy and Astrophysics, 2019, 621, A39.	2.1	102
39	The Physics of Galaxy Cluster Outskirts. Space Science Reviews, 2019, 215, 1.	3.7	102
40	Iron Abundance in the Intracluster Medium at High Redshift. Astrophysical Journal, 2003, 593, 705-720.	1.6	98
41	Scaling Relations for Galaxy Clusters: Properties and Evolution. Space Science Reviews, 2013, 177, 247-282.	3.7	98
42	CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7â^'4431 (Abell S1063) and prospects for cosmography. Astronomy and Astrophysics, 2016, 587, A80.	2.1	98
43	Constraining the cosmological parameters with the gas mass fraction in local and \$mathsf{{vec z}>0.7}\$ galaxy clusters. Astronomy and Astrophysics, 2003, 398, 879-890.	2.1	97
44	The baryon fraction in hydrodynamical simulations of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2006, 365, 1021-1030.	1.6	91
45	Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1339-1350.	1.6	87
46	Occurrence of radio halos in galaxy clusters. Astronomy and Astrophysics, 2015, 580, A97.	2.1	86
47	The Three-Dimensional Shapes of Galaxy Clusters. Space Science Reviews, 2013, 177, 155-194.	3.7	85
48	CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH â^1/4800 SPECTRA C MEMBER GALAXIES. Astrophysical Journal, Supplement Series, 2016, 224, 33.	F _{3.0}	82
49	X-Ray Morphological Analysis of the Planck ESZ Clusters. Astrophysical Journal, 2017, 846, 51.	1.6	82
50	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A5.	2.1	81
51	X-ray and Sunyaev-Zel'dovich scaling relations in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2007, 379, 518-534.	1.6	80
52	Properties of gas clumps and gas clumping factor in the intra-cluster medium. Monthly Notices of the Royal Astronomical Society, 2013, 429, 799-814.	1.6	79
53	The <scp>XMM</scp> cluster outskirts project (Xâ€ <scp>COP</scp>). Astronomische Nachrichten, 2017, 338, 293-298.	0.6	79
54	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A3.	2.1	78

#	Article	IF	CITATIONS
55	ChandraX-ray observations of the 3C 295 cluster core. Monthly Notices of the Royal Astronomical Society, 2001, 324, 842-858.	1.6	76
56	Large-scale inhomogeneities of the intracluster medium: improving mass estimates using the observed azimuthal scatter. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3030-3046.	1.6	73
57	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A12.	2.1	73
58	The X-ray/SZ view of the virial region. Astronomy and Astrophysics, 2013, 551, A22.	2.1	71
59	A <i>Chandra</i> Archival Study of the Temperature and Metal Abundance Profiles in Hot Galaxy Clusters at 0.1 ≲ <i>z</i> ≲ 0.3. Astrophysical Journal, 2007, 666, 835-845.	1.6	71
60	The stripping of a galaxy group diving into the massive cluster A2142. Astronomy and Astrophysics, 2014, 570, A119.	2.1	70
61	Gas clumping in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2198-2208.	1.6	70
62	Evolution of the Colorâ€Magnitude Relation in Highâ€Redshift Clusters: Blue Earlyâ€Type Galaxies and Red Pairs in RDCS J0910+5422. Astrophysical Journal, 2006, 639, 81-94.	1.6	69
63	The XMM Cluster Outskirts Project (X-COP): Thermodynamic properties of the intracluster medium out to <i>R</i> ₂₀₀ in Abell 2319. Astronomy and Astrophysics, 2018, 614, A7.	2.1	68
64	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A4.	2.1	66
65	Xâ€MAS2: Study Systematics on the ICM Metallicity Measurements. Astrophysical Journal, 2008, 674, 728-741.	1.6	65
66	Are we missing baryons in galaxy clusters?. Monthly Notices of the Royal Astronomical Society, 2003, 344, L13-L16.	1.6	64
67	The X-Ray Halo Scaling Relations of Supermassive Black Holes. Astrophysical Journal, 2019, 884, 169.	1.6	64
68	Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847. Astronomy and Astrophysics, 2014, 565, A126.	2.1	63
69	Evolution atz≥ 0.5 of the X-ray properties of simulated galaxy clusters: comparison with observational constraints. Monthly Notices of the Royal Astronomical Society, 2004, 354, 111-122.	1.6	62
70	Spectral properties and origin of the radio halo in A3562. Astronomy and Astrophysics, 2005, 440, 867-879.	2.1	61
71	Comparing masses in literature (CoMaLit) – I. Bias and scatter in weak lensing and X-ray mass estimates of clusters. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3633-3648.	1.6	61
72	PSZ2LenS. Weak lensing analysis of the Planck clusters in the CFHTLenS and in the RCSLenS. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1946-1971.	1.6	61

#	Article	IF	CITATIONS
73	Enrichment of the Hot Intracluster Medium: Observations. Space Science Reviews, 2018, 214, 1.	3.7	59
74	Is the Butcherâ€Oemler Effect a Function of the Cluster Redshift?. Astrophysical Journal, 1999, 516, 647-659.	1.6	59
75	A deep Chandra observation of the cluster environment of the z=1.786 radio galaxy 3C 294. Monthly Notices of the Royal Astronomical Society, 2003, 341, 729-738.	1.6	57
76	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64.	3.0	57
77	THREE-DIMENSIONAL MULTI-PROBE ANALYSIS OF THE GALAXY CLUSTER A1689. Astrophysical Journal, 2015, 806, 207.	1.6	56
78	CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?. Astrophysical Journal Letters, 2014, 783, L10.	3.0	55
79	X-RAY CAVITIES, FILAMENTS, AND COLD FRONTS IN THE CORE OF THE GALAXY GROUP NGC 5044. Astrophysical Journal, 2009, 693, 43-55.	1.6	55
80	On the mass distribution in the Shapley Supercluster inferred from X-ray observations. Monthly Notices of the Royal Astronomical Society, 1997, 289, 787-800.	1.6	51
81	The XMM Cluster Outskirts Project (X-COP): Physical conditions of Abell 2142 up to the virial radius. Astronomy and Astrophysics, 2016, 595, A42.	2.1	51
82	On the Connection between Turbulent Motions and Particle Acceleration in Galaxy Clusters. Astrophysical Journal Letters, 2017, 843, L29.	3.0	51
83	The X-ray/SZ view of the virial region. Astronomy and Astrophysics, 2013, 551, A23.	2.1	50
84	Mass distribution in the core of MACS J1206. Astronomy and Astrophysics, 2017, 607, A93.	2.1	50
85	THE MORPHOLOGIES AND ALIGNMENTS OF GAS, MASS, AND THE CENTRAL GALAXIES OF CLASH CLUSTERS OF GALAXIES. Astrophysical Journal, 2016, 819, 36.	1.6	50
86	Note on a polytropic Â-model to fit the X-ray surface brightness of clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2000, 311, 313-316.	1.6	48
87	The near-infrared luminosity function of cluster galaxies beyond redshift one. Astronomy and Astrophysics, 2006, 450, 909-923.	2.1	48
88	Turbulent pressure support and hydrostatic mass bias in the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2020, 495, 864-885.	1.6	47
89	Mass, shape and thermal properties of Abell 1689 using a multiwavelength X-ray, lensing and Sunyaev–Zel'dovich analysis. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2241-2254.	1.6	46
90	The Three Hundred Project: Correcting for the hydrostatic-equilibrium mass bias in X-ray and SZ surveys. Astronomy and Astrophysics, 2020, 634, A113.	2.1	46

#	Article	IF	CITATIONS
91	Weak-lensing Analysis of X-Ray-selected XXL Galaxy Groups and Clusters with Subaru HSC Data. Astrophysical Journal, 2020, 890, 148.	1.6	45
92	The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters*. Astrophysical Journal, 2018, 860, 104.	1.6	44
93	Chandra detection of reflected X-ray emission from the type 2 QSO in IRAS 09104+4109. Monthly Notices of the Royal Astronomical Society, 2001, 321, L15-L19.	1.6	43
94	An <i>XMM-Newton</i> spatially-resolved study of metal abundance evolution in distant galaxy clusters. Astronomy and Astrophysics, 2012, 537, A142.	2.1	43
95	The evolution of the spatially resolved metal abundance in galaxy clusters up to <i>z</i> = 1.4. Astronomy and Astrophysics, 2015, 578, A46.	2.1	43
96	CoMaLit – IV. Evolution and self-similarity of scaling relations with the galaxy cluster mass. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3675-3695.	1.6	43
97	The mass–concentration relation in lensing clusters: the role of statistical biases and selection effects. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2024-2039.	1.6	43
98	Cosmology in two dimensions: the concentration-mass relation for galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1558-1573.	1.6	42
99	Mass and concentration estimates from weak and strong gravitational lensing: a systematic study. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1899-1915.	1.6	42
100	X-Ray Scaling Relations for a Representative Sample of Planck-selected Clusters Observed with XMM-Newton. Astrophysical Journal, 2020, 892, 102.	1.6	41
101	Scaling Properties of Galaxy Groups. Universe, 2021, 7, 139.	0.9	41
102	Reconstructing mass profiles of simulated galaxy clusters by combining Sunyaev-Zeldovich and X-ray images. Monthly Notices of the Royal Astronomical Society, 2009, 394, 479-490.	1.6	40
103	The physics inside the scaling relations for X-ray galaxy clusters: gas clumpiness, gas mass fraction and slope of the pressure profile. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2629-2639.	1.6	40
104	Hydrodynamical simulations of galaxy clusters in dark energy cosmologies – II. c–M relation. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2921-2938.	1.6	39
105	The outer regions of galaxy clusters: <i>Chandra</i> constraints on the X-ray surface brightness. Astronomy and Astrophysics, 2009, 496, 343-349.	2.1	39
106	Chandra detection of the intracluster medium around 3C 294 at z=1.786. Monthly Notices of the Royal Astronomical Society, 2001, 322, L11-L15.	1.6	38
107	Hubble Space TelescopeACS Weakâ€Lensing Analysis of the Galaxy Cluster RDCS 1252.9â^2927 atz= 1.24. Astrophysical Journal, 2005, 623, 42-56.	1.6	38
108	Chandra observation of the multiple merger cluster Abell 521. Astronomy and Astrophysics, 2006, 446, 417-428.	2.1	37

#	Article	IF	CITATIONS
109	Measuring turbulence and gas motions in galaxy clusters via synthetic <i>Athena</i> X-IFU observations. Astronomy and Astrophysics, 2018, 618, A39.	2.1	36
110	Radio halos in a mass-selected sample of 75 galaxy clusters. Astronomy and Astrophysics, 2021, 647, A51.	2.1	36
111	The Cluster HEritage project with <i>XMM-Newton</i> : Mass Assembly and Thermodynamics at the Endpoint of structure formation. Astronomy and Astrophysics, 2021, 650, A104.	2.1	36
112	BeppoSAX-ROSAT PSPC observations of the Shapley supercluster: A3562. Monthly Notices of the Royal Astronomical Society, 2000, 318, 239-249.	1.6	35
113	X-ray morphological estimators for galaxy clusters. The Astronomical Review, 2013, 8, 40-70.	4.0	35
114	CoMaLit – V. Mass forecasting with proxies: method and application to weak lensing calibrated samples. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3322-3341.	1.6	35
115	Deep <i>Chandra</i> observations of the stripped galaxy group falling into Abell 2142. Astronomy and Astrophysics, 2017, 605, A25.	2.1	35
116	The scatter in the radial profiles of X-ray luminous galaxy clusters as diagnostic of the thermodynamical state of the ICM. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2305-2313.	1.6	34
117	Coulomb interactions in the intracluster medium. Monthly Notices of the Royal Astronomical Society, 1998, 293, L33-L36.	1.6	33
118	Â-model and cooling flows in X-ray clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2000, 318, 1041-1046.	1.6	33
119	Entropy profiles in X-ray luminous galaxy clusters at z > 0.1. Monthly Notices of the Royal Astronomical Society, 2007, 380, 1521-1532.	1.6	33
120	MEASUREMENT OF THE DARK MATTER VELOCITY ANISOTROPY IN GALAXY CLUSTERS. Astrophysical Journal, 2009, 690, 358-366.	1.6	33
121	A <i>CHANDRA</i> -VLA INVESTIGATION OF THE X-RAY CAVITY SYSTEM AND RADIO MINI-HALO IN THE GALAXY CLUSTER RBS 797. Astrophysical Journal, 2012, 753, 47.	1.6	33
122	ON THE DISCREPANCY BETWEEN THEORETICAL AND X-RAY CONCENTRATION-MASS RELATIONS FOR GALAXY CLUSTERS. Astrophysical Journal, 2013, 776, 39.	1.6	33
123	Effects of sedimented helium on the X-ray properties of galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 369, L42-L46.	1.2	32
124	A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2829-2847.	1.6	32
125	Exploring the spectral properties of radio relics – I: integrated spectral index and Mach number. Monthly Notices of the Royal Astronomical Society, 2021, 506, 396-414.	1.6	32
126	Detecting shocked intergalactic gas with X-ray and radio observations. Astronomy and Astrophysics, 2019, 627, A5.	2.1	32

#	Article	IF	CITATIONS
127	AbellÂ611. Astronomy and Astrophysics, 2011, 528, A73.	2.1	31
128	Dissection of the Collisional and Collisionless Mass Components in a Mini Sample of CLASH and HFF Massive Galaxy Clusters at zÂâ‰^Â0.4. Astrophysical Journal, 2018, 864, 98.	1.6	31
129	<scp>The Three Hundred</scp> project: The <scp>gizmo-simba</scp> run. Monthly Notices of the Royal Astronomical Society, 2022, 514, 977-996.	1.6	31
130	CoMaLit – II. The scaling relation between mass and Sunyaev–Zel'dovich signal for Planck selected galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3649-3664.	1.6	30
131	BeppoSAX observations of three distant, highly luminous clusters of galaxies: RXJ1347-1145, Zwicky 3146 and Abell 2390. Monthly Notices of the Royal Astronomical Society, 2001, 322, 187-194.	1.6	29
132	CLUMP-3D: Testing Ĵ›CDM with Galaxy Cluster Shapes. Astrophysical Journal Letters, 2018, 860, L4.	3.0	29
133	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A1.	2.1	29
134	Brief history of metal accumulation in the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2005, 362, 110-116.	1.6	28
135	The generalized scaling relations for X-ray galaxy clusters: the most powerful mass proxy. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1265-1277.	1.6	28
136	<i>Athena</i> X-IFU synthetic observations of galaxy clusters to probe the chemical enrichment of the Universe. Astronomy and Astrophysics, 2018, 620, A173.	2.1	28
137	CLASH-VLT: a full dynamical reconstruction of the mass profile of Abell S1063 from 1 kpc out to the virial radius. Astronomy and Astrophysics, 2020, 637, A34.	2.1	27
138	Hydrodynamical simulations of galaxy clusters in dark energy cosmologies - I. General properties. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2758-2772.	1.6	26
139	Iron in X-COP: Tracing enrichment in cluster outskirts with high accuracy abundance profiles. Astronomy and Astrophysics, 2021, 646, A92.	2.1	26
140	An application of extreme value statistics to the most massive galaxy clusters at low and high redshifts. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1754-1763.	1.6	25
141	SLOSHING COLD FRONTS IN GALAXY GROUPS AND THEIR PERTURBING DISK GALAXIES: AN X-RAY, OPTICAL, AND RADIO CASE STUDY. Astrophysical Journal, 2013, 770, 56.	1.6	25
142	XXL Survey groups and clusters in the Hyper Suprime-Cam Survey. Scaling relations between X-ray properties and weak lensing mass. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4528-4545.	1.6	25
143	ROSATPSPC observations of the outer regions of the Perseus cluster of galaxies. Monthly Notices of the Royal Astronomical Society, 1998, 300, 837-856.	1.6	25
144	Mock catalogs for the extragalactic X-ray sky: Simulating AGN surveys with ATHENA and with the AXIS probe. Astronomy and Astrophysics, 2020, 642, A184.	2.1	25

#	Article	IF	CITATIONS
145	AbellÂ611. Astronomy and Astrophysics, 2010, 514, A88.	2.1	24
146	The relation between mass and concentration in X-ray galaxy clusters at high redshift. Astronomy and Astrophysics, 2016, 590, A126.	2.1	24
147	Apparent high metallicity in 3–4 keV galaxy clusters: the inverse iron-bias in action in the case of the merging cluster Abell 2028. Astronomy and Astrophysics, 2010, 522, A34.	2.1	23
148	CLASH-VLT: CONSTRAINTS ON THE DARK MATTER EQUATION OF STATE FROM ACCURATE MEASUREMENTS OF GALAXY CLUSTER MASS PROFILES. Astrophysical Journal Letters, 2014, 783, L11.	3.0	23
149	A critical assessment of the metal content of the intracluster medium. Astronomy and Astrophysics, 2016, 586, A32.	2.1	23
150	Can giant radio halos probe the merging rate of galaxy clusters?. Astronomy and Astrophysics, 2016, 593, A81.	2.1	23
151	Gas temperature profiles in galaxy clusters with Swift XRT: observations and capabilities to map near <i>R</i> ₂₀₀ . Astronomy and Astrophysics, 2011, 528, A102.	2.1	22
152	Shape and orientation of the gas distribution in A1689. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2646-2656.	1.6	22
153	CLUMP-3D: Three-dimensional Shape and Structure of 20 CLASH Galaxy Clusters from Combined Weak and Strong Lensing. Astrophysical Journal, 2018, 860, 126.	1.6	22
154	Probing Cosmology with Dark Matter Halo Sparsity Using X-Ray Cluster Mass Measurements. Astrophysical Journal, 2018, 862, 40.	1.6	22
155	Radio halos in a mass-selected sample of 75 galaxy clusters. Astronomy and Astrophysics, 2021, 647, A50.	2.1	22
156	CLUMP-3D: three-dimensional lensing and multi-probe analysis of MACS J1206.2â^'0847, a remarkably regular cluster. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3801-3826.	1.6	21
157	Particle acceleration in a nearby galaxy cluster pair: the role of cluster dynamics. Astronomy and Astrophysics, 2019, 630, A77.	2.1	21
158	XMM-Newtonobservation of the interacting cluster Abell 3528. Astronomy and Astrophysics, 2003, 411, 21-32.	2.1	20
159	BeppoSAXtemperature maps of galaxy clusters in the Corona Borealis supercluster: A2061, A2067 and A2124. Monthly Notices of the Royal Astronomical Society, 2004, 353, 1219-1230.	1.6	20
160	Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law. Astronomy and Astrophysics, 2012, 545, A41.	2.1	20
161	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A20.	2.1	20
162	A joint XMM- <i>NuSTAR</i> observation of the galaxy cluster Abell 523: Constraints on inverse Compton emission. Astronomy and Astrophysics, 2019, 628, A83.	2.1	20

#	Article	IF	CITATIONS
163	On the evolution of the entropy and pressure profiles in X-ray luminous galaxy clusters at <i>z</i> > 0.4. Astronomy and Astrophysics, 2017, 604, A100.	2.1	20
164	The chemical evolution of galaxy clusters: Dissecting the iron mass budget of the intracluster medium. Astronomy and Astrophysics, 2020, 637, A58.	2.1	20
165	Magnetogenesis and the Cosmic Web: A Joint Challenge for Radio Observations and Numerical Simulations. Galaxies, 2021, 9, 109.	1.1	20
166	ROSAT PSPC observations of the outer regions of the Perseus cluster of galaxies. Monthly Notices of the Royal Astronomical Society, 1998, 300, 837-856.	1.6	19
167	On the evolution of cooling cores in X-ray galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2008, 387, 631-638.	1.6	19
168	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	1.6	19
169	On a novel approach using massive clusters at high redshifts as cosmological probe. Monthly Notices of the Royal Astronomical Society, 2011, 418, 456-466.	1.6	19
170	Gas rotation in galaxy clusters: signatures and detectability in X-rays. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1565-1575.	1.6	19
171	Joining X-Ray to Lensing: An Accurate Combined Analysis of MACS J0416.1–2403. Astrophysical Journal, 2017, 842, 132.	1.6	19
172	X-ray and strong lensing mass estimate of MS2137.3-2353. Monthly Notices of the Royal Astronomical Society, 2009, 398, 438-450.	1.6	18
173	New <i>XMM-Newton</i> observation of the Phoenix cluster: properties of the cool core. Astronomy and Astrophysics, 2015, 580, A6.	2.1	18
174	The gravitational field of X-COP galaxy clusters. Astronomy and Astrophysics, 2022, 662, A123.	2.1	18
175	X-ray and lensing results on the cluster around the powerful radio galaxy 4C+55.16. Monthly Notices of the Royal Astronomical Society, 1999, 306, 467-472.	1.6	17
176	Dark matter–baryons separation at the lowest mass scale: the Bullet Groupâ~ Monthly Notices of the Royal Astronomical Society: Letters, 2014, 442, L76-L80.	1.2	17
177	Dark matter distribution in X-ray luminous galaxy clusters with Emergent Gravity. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L29-L33.	1.2	17
178	HSC-XXL: Baryon budget of the 136 XXL groups and clusters. Publication of the Astronomical Society of Japan, 2022, 74, 175-208.	1.0	17
179	X-ray and weak lensing measurements of the mass profile of MS1008.1–1224: Chandra and VLT data. Astronomy and Astrophysics, 2003, 398, L5-L9.	2.1	15
180	Cold fronts and metal anisotropies in the X-ray cool core of the galaxy cluster Zw 1742+3306. Astronomy and Astrophysics, 2013, 555, A93.	2.1	15

#	Article	IF	CITATIONS
181	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A8.	2.1	15
182	Comparing different mass estimators for a large subsample of the <i>Planck</i> -ESZ clusters. Astronomy and Astrophysics, 2020, 644, A78.	2.1	15
183	Abell 3560, a galaxy cluster at the edge of a major merging event. Astronomy and Astrophysics, 2002, 396, 65-72.	2.1	15
184	The Deepest Chandra View of RBS 797: Evidence for Two Pairs of Equidistant X-ray Cavities. Astrophysical Journal Letters, 2021, 923, L25.	3.0	15
185	A New Interpretation of the Mass–Temperature Relation and Mass Calibration of Galaxy Clusters Based on the Fundamental Plane. Astrophysical Journal, 2018, 863, 37.	1.6	14
186	Gravitational lensing detection of an extremely dense environment around a galaxy cluster. Nature Astronomy, 2018, 2, 744-750.	4.2	14
187	Pointing to the minimum scatter: the generalized scaling relations for galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2058-2063.	1.6	13
188	Spatial distribution of metals in the ICM: evolution of the iron excess in relaxed galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2018, 481, 361-372.	1.6	13
189	Polytropic state of the intracluster medium in the X-COP cluster sample. Astronomy and Astrophysics, 2019, 627, A19.	2.1	13
190	Constraining the origin and models of chemical enrichment in galaxy clusters using the <i>Athena</i> X-IFU. Astronomy and Astrophysics, 2020, 642, A90.	2.1	13
191	A BCG with Offset Cooling: Is the AGN Feedback Cycle Broken in A2495?. Astrophysical Journal, 2019, 885, 111.	1.6	13
192	The intracluster iron distribution around 4C+55.16. Monthly Notices of the Royal Astronomical Society, 2001, 328, L5-L10.	1.6	12
193	Radio-continuum surveys with SKA and LOFAR: a first look at the perspectives for radio mini-halos. Astronomy and Astrophysics, 2018, 617, A11.	2.1	12
194	SCÂ1327–312 & SCÂ1329–313: Two galaxy groups in-between a major merging event observed with Beppo–SAX. Astronomy and Astrophysics, 2002, 382, 17-27.	2.1	11
195	Intra cluster medium properties and AGN distribution in high- <i>z</i> RCS clusters. Astronomy and Astrophysics, 2008, 489, 967-979.	2.1	11
196	Mass profiles and <i>c</i> Ââ~Â <i>M</i> _{DM} relation in X-ray luminous galaxy clusters (<i>Corrigendum</i>). Astronomy and Astrophysics, 2011, 526, C1.	2.1	11
197	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A7.	2.1	11
198	The XXL Survey. Astronomy and Astrophysics, 2019, 632, A54.	2.1	11

#	Article	IF	CITATIONS
199	CLUMP-3D: the lack of non-thermal motions in galaxy cluster cores. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4338-4344.	1.6	11
200	Tracing the non-thermal pressure and hydrostatic bias in galaxy clusters. Astronomy and Astrophysics, 2022, 657, L1.	2.1	11
201	Projection effects in X-ray cores of cooling flow galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2002, 330, 971-976.	1.6	10
202	Cosmological Constraints from Galaxy Cluster Sparsity, Cluster Gas Mass Fraction, and Baryon Acoustic Oscillation Data. Astrophysical Journal, 2021, 911, 82.	1.6	10
203	Proprieties of clumps and filaments around galaxy clusters. Astronomy and Astrophysics, 2021, 653, A171.	2.1	10
204	Order statistics applied to the most massive and most distant galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2013, 432, 914-930.	1.6	9
205	A weak lensing analysis of the PLCK G100.2-30.4 cluster. Astronomy and Astrophysics, 2015, 579, A7.	2.1	9
206	The <scp>XXL</scp> survey: First results and future. Astronomische Nachrichten, 2017, 338, 334-341.	0.6	9
207	Mass–Richness Relations for X-Ray and SZE-selected Clusters at 0.4Â<ÂzÂ<Â2.0 as Seen by Spitzer at 4.5 μm. Astrophysical Journal, 2018, 867, 12.	1.6	9
208	Voyage through the hidden physics of the cosmic web. Experimental Astronomy, 2021, 51, 1043-1079.	1.6	9
209	MINOT: Modeling the intracluster medium (non-)thermal content and observable prediction tools. Astronomy and Astrophysics, 2020, 644, A70.	2.1	9
210	The Unusually Weak and Exceptionally Steep Radio Relic in A2108. Astrophysical Journal, 2022, 925, 91.	1.6	9
211	Mapping â€ ⁻ out-of-the-box' the properties of the baryons in massive halos. Astronomy and Astrophysics, 2022, 663, L6.	2.1	9
212	A study of the large-scale distribution of galaxies in the South Galactic Pole region – I. The data⋆. Monthly Notices of the Royal Astronomical Society, 1995, 276, 689-705.	1.6	8
213	Implications of the BOOMERANG and MAXIMA-I results for the baryon mass fraction in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2001, 323, L1-L5.	1.6	8
214	CoMaLit – VI. Intrinsic scatter in stacked relations. The weak lensing AMICO galaxy clusters in KiDS-DR3. Monthly Notices of the Royal Astronomical Society, 2020, 497, 894-905.	1.6	8
215	Zw 1718.1-0108: a highly disturbed galaxy cluster at low Galactic latitude. Monthly Notices of the Royal Astronomical Society, 2000, 313, 515-523.	1.6	7
216	Little evidence for entropy and energy excess beyond <i>r</i> 500 - An end to ICM preheating?. Monthly Notices of the Royal Astronomical Society: Letters, 0, , .	1.2	7

#	Article	IF	CITATIONS
217	Excess entropy and energy feedback from within cluster cores up to r200. Monthly Notices of the Royal Astronomical Society, 2017, 472, 713-726.	1.6	7
218	Understanding X-ray and optical selection of galaxy clusters: a comparison of the XXL and CAMIRA cluster catalogues obtained in the common XXL-HSC SSP area. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5624-5637.	1.6	7
219	A study of the large-scale distribution of galaxies in the South Galactic Pole region II. Further evidence for a preferential clustering scale?. Monthly Notices of the Royal Astronomical Society, 1997, 285, 218-224.	1.6	6
220	Secular evolution of galaxies and galaxy clusters in decaying dark matter cosmology. Physical Review D, 2009, 80, .	1.6	6
221	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	1.6	6
222	On the modelling of the excesses of galaxy clusters over high-mass thresholds. Monthly Notices of the Royal Astronomical Society, 2012, 422, 3554-3563.	1.6	6
223	The XXL Survey. Astronomy and Astrophysics, 2020, 642, A124.	2.1	6
224	â€~Hyper-parameters' approach to joint estimation: applications to Cepheid-calibrated distances and X-ray clusters. Monthly Notices of the Royal Astronomical Society, 2003, 340, 573-579.	1.6	5
225	ESTREMO/WFXRT: Extreme phySics in the TRansient and Evolving COsmos. , 2006, , .		5
226	EDGE: explorer of diffuse emission and gamma-ray burst explosions. , 2007, , .		5
227	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A8.	2.1	5
228	Growth and disruption in the Lyra complex. Astronomy and Astrophysics, 2019, 632, A27.	2.1	5
229	Magnetorotational instability in cool cores of galaxy clusters. Journal of Plasma Physics, 2015, 81, .	0.7	4
230	Spectral imaging of the thermal Sunyaev–Zel'dovich effect in X-COP galaxy clusters: method and validation. Astronomy and Astrophysics, 2019, 630, A121.	2.1	4
231	Halo Concentrations and the Fundamental Plane of Galaxy Clusters. Galaxies, 2019, 7, 8.	1.1	4
232	The SKA view of cool-core clusters: evolution of radio mini-halos and AGN feedback. , 2015, , .		4
233	A deep Chandra observation of 3C294. New Astronomy Reviews, 2003, 47, 239-242.	5.2	3
234	The Physical Properties of the Groups of Galaxies. Universe, 2021, 7, 254.	0.9	3

#	Article	IF	CITATIONS
235	From universal profiles to universal scaling laws in X-ray galaxy clusters. Astronomy and Astrophysics, 2020, 644, A111.	2.1	3
236	Cluster mass profiles from Xâ€ray observations: Present constraints and limitations. Astronomische Nachrichten, 2013, 334, 354-359.	0.6	2
237	On mass and shape of galaxy clusters by comparison of Xâ€ray, Sunyaevâ€Zel'dovich effect, and gravitational lensing observations. Astronomische Nachrichten, 2013, 334, 445-448.	0.6	2
238	The gas mass fraction in local and z>0.7 Galaxy Clusters: constraints on Cosmology. Astrophysics and Space Science, 2004, 290, 177-186.	0.5	1
239	Helium abundance (and H 0) in X OP galaxy clusters. Astronomische Nachrichten, 2020, 341, 210-216.	0.6	1
240	Cluster Radio Halos at the crossroads between astrophysics and cosmology in the SKA era. , 2015, , .		1
241	On the dynamical and morphological state of the CHEX-MATE clusters. EPJ Web of Conferences, 2022, 257, 00007.	0.1	1
242	Properties of the intra cluster medium at high redshift. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 48-53.	0.5	0
243	Merging Clusters in the Core of Superclusters: A Multiwavelength View. Globular Clusters - Guides To Galaxies, 2006, , 353-354.	0.1	0
244	Bias on Estimates of X-ray Cluster Mass. EAS Publications Series, 2006, 20, 295-296.	0.3	0
245	The Cluster Gas Mass Fraction as a Cosmological Probe: a Revised Study. Progress of Theoretical Physics Supplement, 2007, 169, 37-40.	0.2	0
246	Evolution in the Iron Abundance of the ICM. Progress of Theoretical Physics Supplement, 2007, 169, 49-52.	0.2	0
247	AGN Feedback in Galaxy Groups: The Two Interesting Cases of AWM 4 and NGC 5044. , 2009, , .		0
248	X-ray Galaxy Clusters & Cosmology. , 2011, , .		0
249	The new fundamental plane dictating galaxy cluster evolution. Proceedings of the International Astronomical Union, 2019, 15, 271-272.	0.0	0
250	SZ contribution to characterize the shape of galaxy cluster haloes. EPJ Web of Conferences, 2020, 228, 00009.	0.1	0
251	Scaling Laws in X-Ray Galaxy Clusters at Redshift > 0.4. , 2004, , 267-270.		0
252	The Gas Mass Fraction in Local and Z > 0.7 Galaxy Clusters: Constraints on Cosmology. , 2004, , 177-186.		0

#	Article	IF	CITATIONS
253	Helium and Iron in X-ray Galaxy Clusters. Globular Clusters - Guides To Galaxies, 2007, , 291-296.	0.1	Ο
254	Observing Metallicity in Simulated Clusters with X-MAS2. Globular Clusters - Guides To Galaxies, 2007, , 365-367.	0.1	0
255	Tracing the Evolution in the Iron Content of the ICM. Globular Clusters - Guides To Galaxies, 2007, , 297-302.	0.1	Ο
256	The XXL Survey – XLVIII. X-ray follow-up of distant XXL clusters: masses, scaling relations, and ACN contamination. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2525-2536.	1.6	0