Jan A Mennigen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9152714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. Environmental Research, 2022, 204, 112063.	3.7	27
2	Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish. Frontiers in Pharmacology, 2022, 13, 822111.	1.6	5
3	Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish. Scientific Reports, 2022, 12, 5576.	1.6	12
4	Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Molecular and Cellular Endocrinology, 2022, 554, 111709.	1.6	1
5	Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. Journal of Hazardous Materials, 2021, 409, 124491.	6.5	48
6	Recent advances in comparative epigenetics. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 37, 100783.	0.4	0
7	Transgenerational effects of polychlorinated biphenyls: 2. Hypothalamic gene expression in rats. Biology of Reproduction, 2021, 105, 690-704.	1.2	9
8	Alanine alters the carbohydrate metabolism of rainbow trout: glucose flux and cell signaling. Journal of Experimental Biology, 2021, 224, .	0.8	6
9	Comparative epigenetics in animal physiology: An emerging frontier. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 36, 100745.	0.4	6
10	Meta-analysis of differentially-regulated hepatic microRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 36, 100750.	0.4	7
11	Exploring the Impact of a Low-Protein High-Carbohydrate Diet in Mature Broodstock of a Glucose-Intolerant Teleost, the Rainbow Trout. Frontiers in Physiology, 2020, 11, 303.	1.3	18
12	Acute and long-term metabolic consequences of early developmental Bisphenol A exposure in zebrafish (Danio rerio). Chemosphere, 2020, 256, 127080.	4.2	18
13	Genetic ablation of bone marrow beta-adrenergic receptors in mice modulates miRNA-transcriptome networks of neuroinflammation in the paraventricular nucleus. Physiological Genomics, 2020, 52, 169-177.	1.0	9
14	Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiological Genomics, 2019, 51, 411-431.	1.0	26
15	Acute exposure to environmentally relevant concentrations of Chinese PFOS alternative F-53B induces oxidative stress in early developing zebrafish. Chemosphere, 2019, 235, 945-951.	4.2	47
16	Bioconcentration and Metabolic Effects of Emerging PFOS Alternatives in Developing Zebrafish. Environmental Science & Technology, 2019, 53, 13427-13439.	4.6	70
17	A reproductive role for the nonapeptides vasotocin and isotocin in male zebrafish (Danio rerio). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 238, 110333.	0.7	8
18	Social status regulates the hepatic miRNAome in rainbow trout: Implications for posttranscriptional regulation of metabolic pathways. PLoS ONE, 2019, 14, e0217978.	1.1	14

Jan A Mennigen

#	Article	IF	CITATIONS
19	Pck-ing up steam: Widening the salmonid gluconeogenic gene duplication trail. Gene, 2019, 698, 129-140.	1.0	12
20	Unexpected effect of insulin on glucose disposal explains glucose intolerance of rainbow trout. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R387-R394.	0.9	12
21	Developmental fluoxetine exposure in zebrafish reduces offspring basal cortisol concentration via life stage-dependent maternal transmission. PLoS ONE, 2019, 14, e0212577.	1.1	15
22	Glucagon regulation of carbohydrate metabolism in rainbow trout: <i>in vivo</i> glucose fluxes and gene expression. Journal of Experimental Biology, 2019, 222, .	0.8	11
23	Consequences on Gametogenesis and Reproduction Performances of a High Carbohydrate Nutrition During the Whole Reproductive Cycle of Male and Female Trout. FASEB Journal, 2019, 33, 591.1.	0.2	Ο
24	Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2018, 224, 210-244.	0.7	107
25	Transgenerational effects of polychlorinated biphenyls: 1. Development and physiology across 3 generations of rats. Environmental Health, 2018, 17, 18.	1.7	48
26	Social status affects lipid metabolism in rainbow trout, <i>Oncorhynchus mykiss</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R241-R255.	0.9	24
27	Endocrine disrupting effects of waterborne fluoxetine exposure on the reproductive axis of female goldfish, Carassius auratus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 202, 70-78.	1.3	27
28	The nonapeptide isotocin in goldfish: Evidence for serotonergic regulation and functional roles in the control of food intake and pituitary hormone release. General and Comparative Endocrinology, 2017, 254, 38-49.	0.8	25
29	MicroTrout: A comprehensive, genome-wide miRNA target prediction framework for rainbow trout, Oncorhynchus mykiss. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2016, 20, 19-26.	0.4	20
30	Micromanaging metabolism—a role for miRNAs in teleost energy metabolism. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 199, 115-125.	0.7	31
31	High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. Journal of Experimental Biology, 2014, 217, 3396-3406.	0.8	107
32	Metabolic consequences of microRNA-122 inhibition in rainbow trout, Oncorhynchus mykiss. BMC Genomics, 2014, 15, 70.	1.2	45
33	Acute endocrine and nutritional co-regulation of the hepatic omy-miRNA-122b and the lipogenic gene fas in rainbow trout, Oncorhynchus mykiss. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 169, 16-24.	0.7	40
34	Postprandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signaling in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 2013, 216, 4483-92.	0.8	53
35	Rapid modulation of gene expression profiles in the telencephalon of male goldfish following exposure to waterborne sex pheromones. General and Comparative Endocrinology, 2013, 192, 204-213.	0.8	16
36	Ontogenesis of expression of metabolic genes and microRNAs in rainbow trout alevins during the transition from the endogenous to the exogenous feeding period. Journal of Experimental Biology, 2013, 216, 1597-608.	0.8	43

JAN A MENNIGEN

#	Article	IF	CITATIONS
37	Functional prediction and physiological characterization of a novel short trans-membrane protein 1 as a subunit of mitochondrial respiratory complexes. Physiological Genomics, 2012, 44, 1133-1140.	1.0	16
38	Postprandial Regulation of Hepatic MicroRNAs Predicted to Target the Insulin Pathway in Rainbow Trout. PLoS ONE, 2012, 7, e38604.	1.1	86
39	Pharmaceuticals as Neuroendocrine Disruptors: Lessons Learned from Fish on Prozac. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2011, 14, 387-412.	2.9	141
40	Dopamine D1Receptor Blockage Potentiates AMPA-Stimulated Luteinising Hormone Release in the Goldfish. Journal of Neuroendocrinology, 2011, 23, 302-309.	1.2	23
41	The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout. Toxicology and Applied Pharmacology, 2011, 251, 201-208.	1.3	50
42	Environmental risk assessment for the serotonin reâ€uptake inhibitor fluoxetine: Case study using the European risk assessment framework. Integrated Environmental Assessment and Management, 2010, 6, 524-539.	1.6	73
43	Secretoneurin is a potential paracrine factor from lactotrophs stimulating gonadotropin release in the goldfish pituitary. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1290-R1297.	0.9	20
44	Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquatic Toxicology, 2010, 100, 354-364.	1.9	114
45	Waterborne fluoxetine disrupts feeding and energy metabolism in the goldfish Carassius auratus. Aquatic Toxicology, 2010, 100, 128-137.	1.9	103
46	Fluoxetine affects weight gain and expression of feeding peptides in the female goldfish brain. Regulatory Peptides, 2009, 155, 99-104.	1.9	55
47	Defining Global Neuroendocrine Gene Expression Patterns Associated with Reproductive Seasonality in Fish. PLoS ONE, 2009, 4, e5816.	1.1	39
48	The goldfish (Carassius auratus) as a model for neuroendocrine signaling. Molecular and Cellular Endocrinology, 2008, 293, 43-56.	1.6	147
49	Effects of fluoxetine on the reproductive axis of female goldfish (<i>Carassius auratus</i>). Physiological Genomics, 2008, 35, 273-282.	1.0	124
50	Bioinformatic Approach to Identify Penultimate Amino Acids Efficient for N-Terminal Methionine Excision. , 2007, , .		0