Alana Grech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9152573/publications.pdf

Version: 2024-02-01

	257450	197818
2,568	24	49
citations	h-index	g-index
		2750
5/	5/	3750
docs citations	times ranked	citing authors
	2,568 citations 57 docs citations	2,568 24 citations h-index 57 57

#	Article	IF	Citations
1	Marine plant dispersal and connectivity measures differ in their sensitivity to biophysical model parameters. Environmental Modelling and Software, 2022, 149, 105313.	4.5	5
2	Marine Mammal Interactions With Fisheries: Review of Research and Management Trends Across Commercial and Small-Scale Fisheries. Frontiers in Marine Science, 2022, 9, .	2.5	17
3	Quantifying the environmental impact of a major coal mine project on the adjacent Great Barrier Reef ecosystems. Marine Pollution Bulletin, 2022, 179, 113656.	5.0	2
4	Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biological Conservation, 2021, 253, 108875.	4.1	24
5	Costâ€effective mitigation strategies to reduce bycatch threats to cetaceans identified using returnâ€onâ€investment analysis. Conservation Biology, 2020, 34, 168-179.	4.7	10
6	A citizen science approach to longâ€ŧerm monitoring of humpback whales (<i>Megaptera) Tj ETQq0 0 0 rgBT /O</i>	verlock 10	O Tf 50 542 Td
7	Long-term trends and a risk analysis of cetacean entanglements and bycatch in fisheries gear in Australian waters. Biodiversity and Conservation, 2020, 29, 251-282.	2.6	32
8	Representation does not necessarily reduce threats to biodiversity: Australia's Commonwealth marine protected area system, 2012–2018. Biological Conservation, 2020, 252, 108813.	4.1	7
9	Residual marine protected areas five years on: Are we still favouring ease of establishment over need for protection?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1758-1764.	2.0	17
10	Prioritizing the protection of climate refugia: designing a climate-ready protected area network. Journal of Environmental Planning and Management, 2019, 62, 2588-2606.	4.5	21
11	Predicting the exposure of coastal species to plastic pollution in a complex island archipelago. Environmental Pollution, 2019, 252, 982-991.	7. 5	15
12	Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biological Conservation, 2019, 236, 604-615.	4.1	175
13	Drinking by sea snakes from oceanic freshwater lenses at first rainfall ending seasonal drought. PLoS ONE, 2019, 14, e0212099.	2.5	13
14	Australia's Great Barrier Reef. , 2019, , 333-362.		0
15	Consequences of global shipping traffic for marine giants. Frontiers in Ecology and the Environment, 2019, 17, 39-47.	4.0	89
16	Predicting the cumulative effect of multiple disturbances on seagrass connectivity. Global Change Biology, 2018, 24, 3093-3104.	9.5	35
17	Dugongs: Seagrass Community Specialists. , 2018, , 629-661.		11
18	Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs. Diversity, 2018, 10, 26.	1.7	22

#	Article	IF	CITATIONS
19	Seagrass Meadows of Northeastern Australia. , 2018, , 1967-1975.		0
20	Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia. Environmental Research Letters, 2017, 12, 044017.	5.2	18
21	Paleoclimatology, Paleogeography, and the Evolution and Distribution of Sea Kraits (Serpentes;) Tj ETQq1 1	0.784314 rgBT 0.8	/Oyerlock 1
22	Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Scientific Reports, 2017, 7, 4458.	3.3	53
23	Best Practice Framework and Principles for Monitoring the Effect of Coastal Development on Marine Mammals. Frontiers in Marine Science, $2017, 4, .$	2.5	17
24	An Economical Custom-Built Drone for Assessing Whale Health. Frontiers in Marine Science, 2017, 4, .	2.5	85
25	A comparative assessment of the financial costs and carbon benefits of REDD+ strategies in Southeast Asia. Environmental Research Letters, 2016, 11, 114022.	5.2	27
26	Physiological, ecological, and behavioural correlates of the size of the geographic ranges of sea kraits (Laticauda; Elapidae, Serpentes): A critique. Journal of Sea Research, 2016, 115, 18-25.	1.6	9
27	Climate change disables coral bleaching protection on the Great Barrier Reef. Science, 2016, 352, 338-342.	12.6	375
28	Coal, Cumulative Impacts, and the Great Barrier Reef. Conservation Letters, 2016, 9, 200-207.	5.7	27
29	Enhancing the Value and Validity of EIA: Serious Science to Protect Australia's Great Barrier Reef. Conservation Letters, 2016, 9, 377-383.	5.7	23
30	Factors influencing incidental representation of previously unknown conservation features in marine protected areas. Conservation Biology, 2016, 30, 154-165.	4.7	21
31	Spatial patterns of seagrass dispersal and settlement. Diversity and Distributions, 2016, 22, 1150-1162.	4.1	42
32	Learning about Feminism in Digital Spaces: online methodologies and participatory mapping. Australian Geographer, 2016, 47, 157-177.	1.7	27
33	Seagrass Meadows of Northeastern Australia. , 2016, , 1-9.		O
34	Seagrass Meadows of Northeastern Australia. , 2016, , 1-9.		0
35	Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2015, 25, 480-504.	2.0	280
36	Re-evaluation of the sustainability of a marine mammal harvest by indigenous people using several lines of evidence. Biological Conservation, 2015, 192, 324-330.	4.1	28

#	Article	IF	Citations
37	Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2015, 167, 414-426.	2.1	121
38	Spatial mismatch between marine protected areas and dugongs in New Caledonia. Biological Conservation, 2015, 184, 154-162.	4.1	32
39	The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuarine, Coastal and Shelf Science, 2015, 153, A1-A12.	2.1	84
40	Australian marine protected areas. , 2014, , 582-599.		4
41	Terrestrial protected areas of Australia. , 2014, , 560-581.		3
42	Local assessments of marine mammals in cross-cultural environments. Biodiversity and Conservation, 2014, 23, 3319-3338.	2.6	16
43	Improving population estimates by quantifying diving and surfacing patterns: A dugong example. Marine Mammal Science, 2014, 30, 348-366.	1.8	25
44	Pelagic sea snakes dehydrate at sea. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140119.	2.6	29
45	Guiding principles for the improved governance of port and shipping impacts in the Great Barrier Reef. Marine Pollution Bulletin, 2013, 75, 8-20.	5. O	77
46	Thermal Biology of Sea Snakes and Sea Kraits1. Integrative and Comparative Biology, 2012, 52, 257-273.	2.0	33
47	A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environmental Research Letters, 2012, 7, 024006.	5.2	185
48	Modelling the fate of marine turtle hatchlings. Ecological Modelling, 2011, 222, 1515-1521.	2.5	51
49	A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Marine Policy, 2011, 35, 560-567.	3.2	92
50	Interactions between a Trawl Fishery and Spatial Closures for Biodiversity Conservation in the Great Barrier Reef World Heritage Area, Australia. PLoS ONE, 2011, 6, e21094.	2.5	21
51	Informing Species Conservation at Multiple Scales Using Data Collected for Marine Mammal Stock Assessments. PLoS ONE, 2011, 6, e17993.	2.5	20
52	Relative Exposure Index: an important factor in sea turtle nesting distribution. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, 140-149.	2.0	41
53	An ecosystemâ€scale predictive model of coastal seagrass distribution. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, 437-444.	2.0	67
54	A spatial assessment of the risk to a mobile marine mammal from bycatch. Aquatic Conservation: Marine and Freshwater Ecosystems, 2008, 18, 1127-1139.	2.0	26

Alana Grech

#	Article	IF	CITATION
55	Rapid Assessment of Risks to a Mobile Marine Mammal in an Ecosystem-Scale Marine Protected Area. Conservation Biology, 2008, 22, 711-720.	4.7	33
56	Rezoning of the Great Barrier Reef World Heritage Area: does it afford greater protection for marine turtles?. Wildlife Research, 2008, 35, 477.	1.4	22
57	Distribution of two species of sea snakes, Aipysurus laevis and Emydocephalus annulatus, in the southern Great Barrier Reef: metapopulation dynamics, marine protected areas and conservation. Coral Reefs, 2007, 26, 291-307.	2.2	26