Domenico Lombardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9152309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil. Soil Dynamics and Earthquake Engineering, 2013, 49, 165-180.	1.9	273
2	Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations. Soil Dynamics and Earthquake Engineering, 2013, 54, 47-60.	1.9	148
3	Similitude relationships for physical modelling of monopile-supported offshore wind turbines. International Journal of Physical Modelling in Geotechnics, 2011, 11, 58-68.	0.5	97
4	Dynamics of offshore wind turbines supported on two foundations. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 159-169.	0.9	93
5	Dynamic response of a geotechnical rigid model container with absorbing boundaries. Soil Dynamics and Earthquake Engineering, 2015, 69, 46-56.	1.9	76
6	Modal analysis of pileâ€supported structures during seismic liquefaction. Earthquake Engineering and Structural Dynamics, 2014, 43, 119-138.	2.5	74
7	Evaluation of seismic performance of pileâ€supported models in liquefiable soils. Earthquake Engineering and Structural Dynamics, 2016, 45, 1019-1038.	2.5	55
8	A practical method for construction of p-y curves for liquefiable soils. Soil Dynamics and Earthquake Engineering, 2017, 97, 478-481.	1.9	50
9	Undrained behaviour of two silica sands and practical implications for modelling SSI in liquefiable soils. Soil Dynamics and Earthquake Engineering, 2014, 66, 293-304.	1.9	48
10	Construction of simplified design <i>p</i> – <i>y</i> curves for liquefied soils. Geotechnique, 2017, 67, 216-227.	2.2	48
11	Model Container Design for Soil-Structure Interaction Studies. Geotechnical, Geological and Earthquake Engineering, 2012, , 135-158.	0.1	40
12	Economic MEMS based 3-axis water proof accelerometer for dynamic geo-engineering applications. Soil Dynamics and Earthquake Engineering, 2012, 36, 111-118.	1.9	34
13	Geotechnical and infrastructural damage due to the 2016 Kumamoto earthquake sequence. Soil Dynamics and Earthquake Engineering, 2018, 104, 390-394.	1.9	33
14	Physical Modelling of Offshore Wind Turbine Foundations for TRL (Technology Readiness Level) Studies. Journal of Marine Science and Engineering, 2021, 9, 589.	1.2	29
15	Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence. Natural Hazards, 2014, 73, 1749-1770.	1.6	26
16	Seismic Design of Offshore Wind Turbines: Good, Bad and Unknowns. Energies, 2021, 14, 3496.	1.6	19
17	Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH). Computers and Geotechnics, 2021, 138, 104356.	2.3	18
18	Finite-Element Study for Seismic Structural and Global Stability of Cantilever-Type Retaining Walls. International Journal of Geomechanics, 2019, 19, .	1.3	16

DOMENICO LOMBARDI

#	Article	IF	CITATIONS
19	Identification of transient vibration characteristics of pile-group models during liquefaction using wavelet transform. Engineering Structures, 2018, 171, 712-729.	2.6	13
20	Physical modeling of interaction problems in geotechnical engineering. , 2021, , 205-256.		12
21	Probabilistic seismic risk assessment of nuclear reactor in a hypothetical UK site. Soil Dynamics and Earthquake Engineering, 2018, 113, 278-285.	1.9	10
22	On the seismic analysis and design of offshore wind turbines. Soil Dynamics and Earthquake Engineering, 2021, 145, 106692.	1.9	10
23	BACTERIAL EPIDEMIOLOGY AND ANTIMICROBIAL RESISTANCE IN THE SURGERY WARDS OF A LARGE TEACHING HOSPITAL IN SOUTHERN ITALY. Mediterranean Journal of Hematology and Infectious Diseases, 2015, 7, e2015040.	0.5	9
24	Use of instability curves for the assessment of post-liquefaction stability and deformation of sloping grounds. Engineering Geology, 2020, 265, 105347.	2.9	6
25	Small-strain stiffness degradation of artificially cemented sands. Geotechnique Letters, 2020, 10, 284-289.	0.6	6
26	Physical Modeling of Offshore Wind Turbine Model for Prediction of Prototype Response. , 2017, , 353-374.		4
27	Role of SSI on seismic performance of nuclear reactors: A case study for a UK nuclear site. Nuclear Engineering and Design, 2020, 364, 110691.	0.8	4
28	Seismic hazard assessment for Guinea, West Africa. Scientific Reports, 2022, 12, 2566.	1.6	4
29	Experimental investigation of transient bending moment of piles during seismic liquefaction. Soil Dynamics and Earthquake Engineering, 2022, 157, 107251.	1.9	4
30	Seismic risk analysis for large dams in West Coast basin, southern Ghana. Journal of Seismology, 0, , 1.	0.6	2
31	Probabilistic seismic hazard assessment for West Africa region. Georisk, 2022, 16, 315-329.	2.6	1
32	Introduction to earthquake geotechnical engineering in relation to foundation design. , 2019, , 1-32.		0
33	Basic concepts of engineering seismology and seismic hazard analysis. , 2019, , 33-61.		0
34	Selection of strong motion for foundation design. , 2019, , 63-78.		0
35	Ground response analysis. , 2019, , 79-102.		0
36	Seismic analysis methods related to foundation design. , 2019, , 103-140.		0

#	Article	IF	CITATIONS
37	Liquefaction: theoretical aspects. , 2019, , 141-171.		0
38	Liquefaction: practical aspects. , 2019, , 173-214.		0
39	Analysis and design of shallow foundations. , 2019, , 215-240.		0
40	Pile foundations. , 2019, , 241-295.		0
41	Analysis of foundations for major bridges. , 2019, , 297-330.		0
42	Foundations in slopes and for retaining walls. , 2019, , 331-364.		0
43	Engineering correlations for the design of foundations. , 2019, , 421-450.		0
44	Analysis of observed liquefaction during the 2016 Kumamoto earthquake. , 2018, , 837-841.		0