
Xin-Shan Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9150710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>O</i> -GlcNAcylation increases PYGL activity by promoting phosphorylation. Glycobiology, 2022, 32, 101-109.	2.5	7
2	Iterative Synthesis of 2â€Deoxyoligosaccharides Enabled by Stereoselective Visibleâ€Lightâ€Promoted Glycosylation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
3	Innentitelbild: Iterative Synthesis of 2â€Deoxyoligosaccharides Enabled by Stereoselective Visibleâ€Lightâ€Promoted Glycosylation (Angew. Chem. 20/2022). Angewandte Chemie, 2022, 134, .	2.0	0
4	Synthesis and Immunological Evaluation of Pentamannose-Based HIV-1 Vaccine Candidates. Bioconjugate Chemistry, 2022, 33, 807-820.	3.6	4
5	Donor <scp>Preactivationâ€Based</scp> Glycosylation: An Efficient Strategy for Glycan Synthesis. Chinese Journal of Chemistry, 2021, 39, 531-542.	4.9	14
6	Synthesis and immunological evaluation of <i>N</i> -acyl modified Globo H derivatives as anticancer vaccine candidates. RSC Medicinal Chemistry, 2021, 12, 1239-1243.	3.9	10
7	A general approach to C-Acyl glycosides via palladium/copper Co-catalyzed coupling reaction of glycosyl carbothioates and arylboronic acids. Tetrahedron, 2021, 82, 131955.	1.9	9
8	Sensing of mycobacterial arabinogalactan by galectinâ€9 exacerbates mycobacterial infection. EMBO Reports, 2021, 22, e51678.	4.5	14
9	Electrochemical Trifluoromethylation of Glycals. Journal of Organic Chemistry, 2021, 86, 16187-16194.	3.2	15
10	Influenza Virus Precision Diagnosis and Continuous Purification Enabled by Neuraminidase-Resistant Glycopolymer-Coated Microbeads. ACS Applied Materials & Interfaces, 2021, 13, 46260-46269.	8.0	6
11	Glycan Assembly Strategy: From Concept to Application. Chemical Record, 2021, 21, 3256-3277.	5.8	5
12	Synthesis and biological evaluation of bergenin derivatives as new immunosuppressants. RSC Medicinal Chemistry, 2021, 12, 1968-1976.	3.9	1
13	Visible-light-promoted 3,5-dimethoxyphenyl glycoside activation and glycosylation. Chemical Communications, 2021, 57, 10899-10902.	4.1	6
14	Additive-controlled synthesis of 1- and 2-deoxysugars from thioglycosides. Journal of Carbohydrate Chemistry, 2021, 40, 479-500.	1.1	3
15	Electrochemical Bromination of Glycals. Frontiers in Chemistry, 2021, 9, 796690.	3.6	3
16	Stereoselective Electroâ€2â€deoxyglycosylation from Glycals. Angewandte Chemie, 2020, 132, 15316-15320.	2.0	11
17	Stereoselective Electroâ€2â€deoxyglycosylation from Glycals. Angewandte Chemie - International Edition, 2020, 59, 15204-15208.	13.8	39
18	Recent advances in glycan synthesis. Current Opinion in Chemical Biology, 2020, 58, 20-27.	6.1	18

#	Article	IF	CITATIONS
19	Carbocyclic Ring Closure of Aryl C-Glycosides Promoted by Fluoroboric Acid. Journal of Organic Chemistry, 2020, 85, 9339-9346.	3.2	1
20	Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody. Organic and Biomolecular Chemistry, 2020, 18, 2886-2892.	2.8	5
21	C-Glycosylation enabled by N-(glycosyloxy)acetamides. Organic and Biomolecular Chemistry, 2020, 18, 3043-3046.	2.8	12
22	Total synthesis of tumor-associated KH-1 antigen core nonasaccharide <i>via</i> photo-induced glycosylation. Organic Chemistry Frontiers, 2020, 7, 1255-1259.	4.5	13
23	Fluorine-modified sialyl-Tn-CRM197 vaccine elicits a robust immune response. Glycoconjugate Journal, 2019, 36, 399-408.	2.7	23
24	Copper-mediated O-arylation of lactols with aryl boronic acids. Chinese Chemical Letters, 2019, 30, 1533-1537.	9.0	9
25	Rapid glycosylation of 2′-benzoylphenyl glycosides promoted by TfOH. Organic Chemistry Frontiers, 2019, 6, 2756-2759.	4.5	2
26	Total Synthesis of a Hyperbranched <i>N</i> â€Linked Hexasaccharide Attached to ATCVâ€1 Major Capsid Protein without Precedent. Chinese Journal of Chemistry, 2019, 37, 42-48.	4.9	11
27	N-Alkyl-1,5-dideoxy-1,5-imino-l-fucitols as fucosidase inhibitors: Synthesis, molecular modelling and activity against cancer cell lines. Bioorganic Chemistry, 2019, 84, 418-433.	4.1	15
28	Recent Advances in Chemical Synthesis of Polysaccharides. Acta Chimica Sinica, 2019, 77, 581.	1.4	9
29	Carbohydrateâ€based vaccines for oncotherapy. Medicinal Research Reviews, 2018, 38, 1003-1026.	10.5	64
30	A five-component one-pot synthesis of phosphatidylinositol pentamannoside (PIM5). Chinese Chemical Letters, 2018, 29, 1340-1342.	9.0	12
31	Synthetic Glycans and Glycomimetics: A Promising Alternative to Natural Polysaccharides. Chemistry - A European Journal, 2018, 24, 6696-6704.	3.3	25
32	Synthesis of Nâ€6ubstituted Iminosugar Derivatives and Evaluation of Their Immunosuppressive Activities. ChemMedChem, 2018, 13, 338-351.	3.2	3
33	Rational Design of Dimeric LysineN-Alkylamides as Potent and Broad-Spectrum Antibacterial Agents. Journal of Medicinal Chemistry, 2018, 61, 2865-2874.	6.4	46
34	N -9 Alkylation of purines via light-promoted and metal-free radical relay. Chinese Chemical Letters, 2018, 29, 61-64.	9.0	6
35	O-Glycosylation Enabled by N-(Glycosyloxy)acetamides. Journal of Organic Chemistry, 2018, 83, 8292-8303.	3.2	10
36	Stereocontrolled Synthesis of 2-Deoxy- <i>C</i> -glycopyranosyl Arenes Using Glycals and Aromatic Amines. Organic Letters, 2018, 20, 3079-3082.	4.6	28

#	Article	IF	CITATIONS
37	Frontispiece: Synthetic Glycans and Glycomimetics: A Promising Alternative to Natural Polysaccharides. Chemistry - A European Journal, 2018, 24, .	3.3	0
38	Chemical synthesis and biological evaluation of penta- to octa- saccharide fragments of Vi polysaccharide from <i>Salmonella typhi</i> . Organic Chemistry Frontiers, 2018, 5, 2179-2188.	4.5	12
39	Transition State-Based Sialyltransferase Inhibitors: Mimicking Oxocarbenium Ion by Simple Amide. Journal of Medicinal Chemistry, 2017, 60, 2135-2141.	6.4	18
40	Validation, Identification, and Biological Consequences of the Site-specific O-GlcNAcylation Dynamics of Carbohydrate-responsive Element-binding Protein (ChREBP). Molecular and Cellular Proteomics, 2017, 16, 1233-1243.	3.8	23
41	Synthesis and Antigenic Evaluation of Oligosaccharide Mimics of Vi Antigen from <i>Salmonella typhi</i> . Chemistry - A European Journal, 2017, 23, 10670-10677.	3.3	13
42	Synthesis and biological evaluation of N-arylated-lactam-type iminosugars as potential immunosuppressive agents. Organic and Biomolecular Chemistry, 2017, 15, 5912-5919.	2.8	5
43	General Approach to Five-Membered Nitrogen Heteroaryl <i>C</i> -Glycosides Using a Palladium/Copper Cocatalyzed C–H Functionalization Strategy. Organic Letters, 2017, 19, 3608-3611.	4.6	45
44	Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nature Communications, 2017, 8, 14851.	12.8	150
45	A cancer vaccine based on fluorine-modified sialyl-Tn induces robust immune responses in a murine model. Oncotarget, 2017, 8, 47330-47343.	1.8	32
46	Synthesis and immunological evaluation of MUC1 glycopeptide conjugates bearing N-acetyl modified STn derivatives as anticancer vaccines. Organic and Biomolecular Chemistry, 2016, 14, 7226-7237.	2.8	24
47	Stereoselective Koenigs–Knorr Glycosylation Catalyzed by Urea. Angewandte Chemie, 2016, 128, 8173-8176.	2.0	11
48	Stereoselective Koenigs–Knorr Glycosylation Catalyzed by Urea. Angewandte Chemie - International Edition, 2016, 55, 8041-8044.	13.8	97
49	Synthesis and Evaluation of Glycoconjugates Comprising <i>N</i> â€Acylâ€Modified Thomsen–Friedenreich Antigens as Anticancer Vaccines. ChemMedChem, 2016, 11, 1090-1096.	3.2	15
50	Ligand-Controlled Monoselective <i>C</i> -Aryl Glycoside Synthesis via Palladium-Catalyzed C–H Functionalization of <i>N</i> -Quinolyl Benzamides with 1-lodoglycals. Organic Letters, 2016, 18, 1836-1839.	4.6	69
51	Light-driven highly efficient glycosylation reactions. Organic Chemistry Frontiers, 2016, 3, 737-743.	4.5	38
52	Indolo-quinoline boron difluoride dyes: synthesis and spectroscopic properties. Organic and Biomolecular Chemistry, 2016, 14, 4185-4188.	2.8	10
53	Altering the Specificity of the Antibody Response to HIV gp120 with a Glycoconjugate Antigen. ACS Chemical Biology, 2016, 11, 1702-1709.	3.4	9
54	Broadly Neutralizing Antibodyâ€Guided Carbohydrateâ€Based HIV Vaccine Design: Challenges and Opportunities. ChemMedChem, 2016, 11, 357-362.	3.2	11

#	Article	IF	CITATIONS
55	Visible Light Photoredox-Catalyzed <i>O</i> -Sialylation Using Thiosialoside Donors. Journal of Organic Chemistry, 2016, 81, 7134-7138.	3.2	33
56	Synthesis and immunological evaluation of N-acyl modified Tn analogues as anticancer vaccine candidates. Bioorganic and Medicinal Chemistry, 2016, 24, 915-920.	3.0	18
57	KOtBu-mediated aromatic O-glycosylation of 1,2-anhydrosugar and aryl boronic acid. Tetrahedron Letters, 2016, 57, 1372-1374.	1.4	10
58	Synthetic and immunological studies of N-acyl modified S-linked STn derivatives as anticancer vaccine candidates. Organic and Biomolecular Chemistry, 2015, 13, 3677-3690.	2.8	33
59	Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Organic and Biomolecular Chemistry, 2015, 13, 6399-6406.	2.8	29
60	Iminosugars as Immunomodulating Agents: Synthesis and Biological Activities of 1â€Deoxynojirimycin and Related Compounds. Israel Journal of Chemistry, 2015, 55, 336-346.	2.3	24
61	Direct C–H Trifluoromethylation of Glycals by Photoredox Catalysis. Organic Letters, 2015, 17, 5698-5701.	4.6	58
62	Additive-controlled stereoselective glycosylations of 2,3-oxazolidinone protected glucosamine or galactosamine thioglycoside donors with phenols based on preactivation protocol. Carbohydrate Research, 2015, 403, 104-114.	2.3	18
63	Synthetic phenylethanoid glycoside derivatives as potent neuroprotective agents. European Journal of Medicinal Chemistry, 2015, 95, 313-323.	5.5	19
64	Photoinduced C–S Bond Cleavage of Thioglycosides and Glycosylation. Organic Letters, 2015, 17, 5606-5609.	4.6	53
65	Cyclopropenes for the Synthesis of Cyclopropaneâ€Fused Dihydroquinolines and Benzazepines. Advanced Synthesis and Catalysis, 2015, 357, 2893-2902.	4.3	15
66	Highly Substituted Cyclopentane–CMP Conjugates as Potent Sialyltransferase Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 7972-7990.	6.4	31
67	Synthesis of N-dialkylphosphoryl iminosugar derivatives and their immunosuppressive activities. Organic and Biomolecular Chemistry, 2015, 13, 9364-9368.	2.8	7
68	2-Pyridyl glycoside: an alternative glycosyl donor in preactivation protocol. Tetrahedron Letters, 2015, 56, 211-214.	1.4	14
69	Synthesis of 2-deoxy-C-glycosides via Lewis acid-mediated rearrangement of 2,3-anhydro-1-thiopyranosides. Organic Chemistry Frontiers, 2014, 1, 798-806.	4.5	17
70	Synthesis of triazolyl-linked polysialic acids. Tetrahedron, 2014, 70, 9405-9412.	1.9	8
71	<i>N</i> â€Arylatedâ€Lactamâ€Type Iminosugars as New Immunosuppressive Agents: Discovery, Optimization, and Biological Evaluation. Chemistry - an Asian Journal, 2014, 9, 2260-2271.	3.3	11
72	"Ring Opening–Ring Closure―Strategy for the Synthesis of Aryl- <i>C</i> -glycosides. Journal of Organic Chemistry, 2014, 79, 4676-4686.	3.2	37

#	Article	IF	CITATIONS
73	ortho-Methylphenylthioglycosides as glycosyl building blocks for preactivation-based oligosaccharide synthesis. Carbohydrate Research, 2014, 384, 1-8.	2.3	20
74	Preactivation: An Alternative Strategy in Stereoselective Glycosylation and Oligosaccharide Synthesis. Asian Journal of Organic Chemistry, 2013, 2, 30-49.	2.7	52
75	Neamine-heterocycle conjugates as potential anti-HIV agents. Chinese Chemical Letters, 2013, 24, 273-278.	9.0	4
76	Lewis Acids as α-Directing Additives in Glycosylations by Using 2,3- <i>O</i> -Carbonate-Protected Glucose and Galactose Thioglycoside Donors Based on Preactivation Protocol. Journal of Organic Chemistry, 2012, 77, 5255-5270.	3.2	35
77	Carbohydrate-based cancer vaccines: target cancer with sugar bullets. Glycoconjugate Journal, 2012, 29, 259-271.	2.7	52
78	Design and syntheses of some iminosugar derivatives as potential immunosuppressants. MedChemComm, 2011, 2, 909.	3.4	15
79	Enhancement of the Immunogenicity of Synthetic Carbohydrate Vaccines by Chemical Modifications of STn Antigen. ACS Chemical Biology, 2011, 6, 252-259.	3.4	80
80	Synthetic N-Alkylated Iminosugars as New Potential Immunosuppressive Agents. ACS Medicinal Chemistry Letters, 2011, 2, 682-686.	2.8	27
81	A Highly αâ€6tereoselective Synthesis of Oligosaccharide Fragments of the Viâ€Antigen from <i>Salmonella typhi</i> and Their Antigenic Activities. Chemistry - A European Journal, 2011, 17, 14518-14526.	3.3	23
82	Synthesis of N-substituted iminosugar derivatives and their immunosuppressive activities. Carbohydrate Research, 2010, 345, 780-786.	2.3	23
83	Rational Design and Synthesis of Highly Potent Pharmacological Chaperones for Treatment of N370S Mutant Gaucher Disease. Journal of Medicinal Chemistry, 2009, 52, 3146-3149.	6.4	61
84	Regio- and stereo-selective synthesis of aryl 2-deoxy-C-glycopyranosides by palladium-catalyzed Heck coupling reactions of glycals and aryl iodides. Organic and Biomolecular Chemistry, 2009, 7, 3855.	2.8	64
85	Oxidant-Controlled Heck-Type <i>C</i> -Glycosylation of Glycals with Arylboronic Acids: Stereoselective Synthesis of Aryl 2-Deoxy- <i>C</i> -glycosides. Organic Letters, 2009, 11, 1709-1712.	4.6	103
86	An expeditious one-pot synthesis of 1,6-dideoxy-N-alkylated nojirimycin derivatives and their inhibitory effects on the secretion of IFN-Î ³ and IL-4. Bioorganic and Medicinal Chemistry, 2008, 16, 1605-1612.	3.0	29
87	Stereoselectivity investigation on glycosylation of oxazolidinone protected 2-amino-2-deoxy-d-glucose donors based on pre-activation protocol. Tetrahedron, 2008, 64, 4949-4958.	1.9	50
88	Pre-activation protocol leading to highly stereoselectivity-controllable glycosylations of oxazolidinone protected glucosamines. Chemical Communications, 2008, , 597-599.	4.1	67
89	Highly Direct α-Selective Glycosylations of 3,4-O-Carbonate-Protected 2-Deoxy- and 2,6-Dideoxythioglycosides by Preactivation Protocol. Organic Letters, 2008, 10, 3445-3448.	4.6	51
90	Syntheses of Lewis ^X and Dimeric Lewis ^X :  Construction of Branched Oligosaccharides by a Combination of Preactivation and Reactivity Based Chemoselective One-Pot Glycosylations. Journal of Organic Chemistry, 2007, 72, 8958-8961.	3.2	64

#	Article	lF	CITATIONS
91	Multi-Component One-Pot Synthesis of the Tumor-Associated Carbohydrate Antigen Globo-H Based on Preactivation of Thioglycosyl Donors. Journal of Organic Chemistry, 2007, 72, 6409-6420.	3.2	134
92	Iterative one-pot syntheses of chitotetroses. Carbohydrate Research, 2006, 341, 1669-1679.	2.3	56
93	An efficient and improved procedure for preparation of triflyl azide and application in catalytic diazotransfer reaction. Tetrahedron Letters, 2005, 46, 8993-8995.	1.4	81
94	Synthetic Iminosugar Derivatives as New Potential Immunosuppressive Agents. Journal of Medicinal Chemistry, 2005, 48, 3688-3691.	6.4	64
95	Iterative One-Pot Synthesis of Oligosaccharides. Angewandte Chemie - International Edition, 2004, 43, 5221-5224.	13.8	313
96	Recent development in the design of sialyltransferase inhibitors. Medicinal Research Reviews, 2003, 23, 32-47.	10.5	39
97	Conversion of the carboxy group of sialic acid donors to a protected hydroxymethyl group yields an efficient reagent for the synthesis of the unnatural beta-linkage. Chemical Communications, 2001, , 974-975.	4.1	36
98	Anomeric Reactivity-Based One-Pot Oligosaccharide Synthesis:Â A Rapid Route to Oligosaccharide Libraries. Journal of Organic Chemistry, 2000, 65, 2410-2431.	3.2	164
99	Programmable One-Pot Oligosaccharide Synthesis. Journal of the American Chemical Society, 1999, 121, 734-753.	13.7	817
100	Iterative Synthesis of 2â€Deoxyoligosaccharides Enabled by Stereoselective Visibleâ€Light Promoted	2.0	1

Glycosylation. Angewandte Chemie, 0, , .