Peter MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9150709/publications.pdf

Version: 2024-02-01

53 1,876 23 43 g-index

57 57 57 57 1926

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Boar spermadhesin AWN: novel insights in its binding behavior and localization on sperm. Biology of Reproduction, 2022, , .	1.2	2
2	Seminal lipid profiling and antioxidant capacity: A species comparison. PLoS ONE, 2022, 17, e0264675.	1.1	4
3	Drug–Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers. Biochemistry, 2022, 61, 1392-1403.	1.2	5
4	Impact of Selected Small-Molecule Kinase Inhibitors on Lipid Membranes. Pharmaceuticals, 2021, 14, 746.	1.7	6
5	Interaction of the small-molecule kinase inhibitors tofacitinib and lapatinib with membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183414.	1.4	8
6	Binding of the small-molecule kinase inhibitor ruxolitinib to membranes does not disturb membrane integrity. Biochemistry and Biophysics Reports, 2020, 24, 100838.	0.7	3
7	Mechanistic Insight into Lipid Binding to Yeast Niemann Pick Type C2 Protein. Biochemistry, 2020, 59, 4407-4420.	1.2	9
8	Membrane Interaction of Ibuprofen with Cholesterol-Containing Lipid Membranes. Biomolecules, 2020, 10, 1384.	1.8	16
9	Inhibition of influenza virus activity by the bovine seminal plasma protein PDC-109. European Biophysics Journal, 2019, 48, 503-511.	1.2	1
10	Synthesis and Characterization of a New Bifunctionalized, Fluorescent, and Amphiphilic Molecule for Recruiting SH ontaining Molecules to Membranes. ChemBioChem, 2018, 19, 1643-1647.	1.3	6
11	The Potential of α-Spinasterol to Mimic the Membrane Properties of Natural Cholesterol. Molecules, 2017, 22, 1390.	1.7	5
12	Membrane properties of hydroxycholesterols related to the brain cholesterol metabolism. Beilstein Journal of Organic Chemistry, 2017, 13, 720-727.	1.3	2
13	The interaction of sorafenib and regorafenib with membranes is modulated by their lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2871-2881.	1.4	19
14	The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition. Molecular and Cellular Endocrinology, 2016, 428, 68-81.	1.6	25
15	Interaction of fluorescent phospholipids with cyclodextrins. Chemistry and Physics of Lipids, 2016, 194, 37-48.	1.5	12
16	Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques. European Biophysics Journal, 2016, 45, 149-163.	1.2	8
17	Articulated rods – a novel class of molecular rods based on oligospiroketals (OSK). Beilstein Journal of Organic Chemistry, 2015, 11, 74-84.	1.3	7
18	Recruitment of SHâ€Containing Peptides to Lipid and Biological Membranes through the Use of a Palmitic Acid Functionalized with a Maleimide Group. Angewandte Chemie - International Edition, 2015, 54, 323-326.	7.2	9

#	Article	IF	CITATIONS
19	Membrane properties of cholesterol analogs with an unbranched aliphatic side chain. Chemistry and Physics of Lipids, 2014, 184, 1-6.	1.5	15
20	Cholesterol's Aliphatic Side Chain Modulates Membrane Properties. Angewandte Chemie - International Edition, 2013, 52, 12848-12851.	7.2	54
21	Organization of fluorescent cholesterol analogs in lipid bilayers $\hat{a} \in \mathbb{C}^n$ Lessons from cyclodextrin extraction. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1822-1828.	1.4	36
22	Structure and Dynamics of Molecular Rods in Membranes: Application of a Spin‣abeled Rod. Chemistry - A European Journal, 2013, 19, 2703-2710.	1.7	9
23	DBD dyes as fluorescent probes for sensing lipophilic environments. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5367-5371.	1.0	17
24	Uptake of a fluorescent methyl- \hat{l}^2 -cyclodextrin via clathrin-dependent endocytosis. Chemistry and Physics of Lipids, 2012, 165, 505-511.	1.5	40
25	New molecular rods â€" Characterization of their interaction with membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2781-2788.	1.4	15
26	Interaction of Mammalian Seminal Plasma Protein PDC-109 with Cholesterol: Implications for a Putative CRAC Domain. Biochemistry, 2010, 49, 9027-9031.	1.2	37
27	Use of Liposomes for Studying Interactions of Soluble Proteins with Cellular Membranes. Methods in Molecular Biology, 2010, 606, 69-82.	0.4	10
28	Molecular Rods with Oligospiroketal Backbones as Anchors in Biological Membranes. Angewandte Chemie - International Edition, 2009, 48, 4433-4435.	7.2	15
29	Biophysical Characterization of a New Phospholipid Analogue with a Spin-Labeled Unsaturated Fatty Acyl Chain. Biophysical Journal, 2009, 96, 1008-1015.	0.2	5
30	Analysis of stem cell lipids by offline HPTLC-MALDI-TOF MS. Analytical and Bioanalytical Chemistry, 2008, 392, 849-860.	1.9	107
31	Characterization of the Ternary Mixture of Sphingomyelin, POPC, and Cholesterol: Support for an Inhomogeneous Lipid Distribution at High Temperatures. Biophysical Journal, 2008, 94, 2680-2690.	0.2	127
32	The Lipid Composition Modulates the Influence of the Bovine Seminal Plasma Protein PDC-109 on Membrane Stability. Biochemistry, 2007, 46, 11621-11629.	1.2	21
33	The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet. European Biophysics Journal, 2007, 36, 461-475.	1.2	21
34	Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS Journal, 2006, 273, 971-981.	2,2	97
35	Structural and molecular characterization of equine sperm-binding fibronectin-II module proteins. Molecular Reproduction and Development, 2005, 70, 45-57.	1.0	38
36	StarD10, a START Domain Protein Overexpressed in Breast Cancer, Functions as a Phospholipid Transfer Protein. Journal of Biological Chemistry, 2005, 280, 27436-27442.	1.6	79

#	Article	IF	Citations
37	Desmosterol May Replace Cholesterol in Lipid Membranes. Biophysical Journal, 2005, 88, 1838-1844.	0.2	68
38	Interaction of Fibronectin Type II Proteins with Membranes:  The Stallion Seminal Plasma Protein SP-1/2. Biochemistry, 2004, 43, 464-472.	1,2	29
39	Dynamics of lipid chain attached fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) in negatively charged membranes determined by NMR spectroscopy. European Biophysics Journal, 2003, 32, 47-54.	1.2	28
40	Analysis of the lipid composition of bull spermatozoa by MALDI-TOF mass spectrometry—a cautionary note. Chemistry and Physics of Lipids, 2003, 126, 85-94.	1.5	75
41	The Potential of Fluorescent and Spin-labeled Steroid Analogs to Mimic Natural Cholesterol. Journal of Biological Chemistry, 2003, 278, 45563-45569.	1.6	171
42	Rapid Transbilayer Movement of the Fluorescent Sterol Dehydroergosterol in Lipid Membranes. Biophysical Journal, 2002, 83, 1525-1534.	0.2	87
43	Rapid Transbilayer Movement of Spin-Labeled Steroids in Human Erythrocytes and in Liposomes. Biophysical Journal, 2002, 82, 1418-1428.	0.2	53
44	Influence of the bovine seminal plasma protein PDC-109 on cholesterol in the presence of phospholipids. European Biophysics Journal, 2002, 31, 438-447.	1.2	36
45	Dynamics of Membrane Penetration of the Fluorescent 7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl (NBD) Group Attached to an Acyl Chain of Phosphatidylcholine. Biophysical Journal, 2001, 80, 822-831.	0.2	109
46	Influence of the Bovine Seminal Plasma Protein PDC-109 on the Physical State of Membranesâ€. Biochemistry, 2001, 40, 8326-8334.	1.2	75
47	Vesicular and Nonvesicular Transport of Phosphatidylcholine in Polarized HepG2 Cells. Traffic, 2001, 2, 277-296.	1.3	38
48	Rapid Flip-Flop of Phospholipids in Endoplasmic Reticulum Membranes Studied by a Stopped-Flow Approach. Biophysical Journal, 2000, 78, 2628-2640.	0.2	85
49	Biophysical characterization of the interaction of bovine seminal plasma protein PDC-109 with phospholipid vesicles. European Biophysics Journal, 1998, 27, 33-41.	1.2	85
50	Release of Phospholipids from Erythrocyte Membranes by Taurocholate Is Determined by Their Transbilayer Orientation and Hydrophobic Backbone. Biochemistry, 1998, 37, 17093-17103.	1.2	14
51	ATP-dependent redistribution of phosphatidylethanolamine in the plasma membrane of an epithelial and a hepatocytic cell line. Pflugers Archiv European Journal of Physiology, 1996, 431, R243-R244.	1.3	0
52	A KINETIC MODEL OF PHOSPHOLIPID TRANSLOCATION IN THE ERYTHROCYTE MEMBRANE. Journal of Biological Systems, 1995, 03, 95-103.	0.5	0
53	On the validity of lipid dequenching assays for estimating virus fusion kinetics. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 360-366.	1.4	19