José V Pastor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9150696/publications.pdf

Version: 2024-02-01

			257357	3	15616
	84	2,227	24		38
	papers	citations	h-index		g-index
_					
	86	86	86		1239
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	An experimental study with renewable fuels using ECN Spray A and D nozzles. International Journal of Engine Research, 2022, 23, 1748-1759.	1.4	10
2	An Optical Engine Used as a Physical Model for Studies of the Combustion Process Applying a Two-Color Pyrometry Technique. Energies, 2022, 15, 4717.	1.6	3
3	Soot reduction for cleaner Compression Ignition Engines through innovative bowl templates. International Journal of Engine Research, 2021, 22, 2477-2491.	1.4	8
4	Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis. Energy, 2021, 221, 119764.	4.5	15
5	Simultaneous high-speed spectroscopy and 2-color pyrometry analysis in an optical compression ignition engine fueled with OMEX-diesel blends. Combustion and Flame, 2021, 230, 111437.	2.8	20
6	Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel, 2020, 260, 116377.	3.4	19
7	An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 2020, 260, 114238.	5.1	35
8	Experimental Study of the Effect of Hydrotreated Vegetable Oil and Oxymethylene Ethers on Main Spray and Combustion Characteristics under Engine Combustion Network Spray A Conditions. Applied Sciences (Switzerland), 2020, 10, 5460.	1.3	24
9	Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system. Journal of Cleaner Production, 2020, 271, 122499.	4.6	8
10	Experimental Study of the Influence of Gasoline–Diesel Blends on the Combustion Process and Soot Formation under Diesel Engine-Like Conditions. Energy & Engine Study & Study & Study & State & Study & Stu	2.5	1
11	Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame, 2019, 204, 290-303.	2.8	29
12	In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Applied Thermal Engineering, 2019, 149, 1-10.	3.0	33
13	Potential and Limitations of Dual Fuel Operation of High Speed Large Engines. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	13
14	Influence of spatial and temporal distribution of Turbulent Kinetic Energy on heat transfer coefficient in a light duty CI engine operating with Partially Premixed Combustion. Applied Thermal Engineering, 2018, 129, 31-40.	3.0	11
15	Redesign and Characterization of a Single-Cylinder Optical Research Engine to Allow Full Optical Access and Fast Cleaning during Combustion Studies. Experimental Techniques, 2018, 42, 55-68.	0.9	4
16	Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques. Applied Sciences (Switzerland), 2018, 8, 2571.	1.3	11
17	Effect of hydrogen addition on the OH* and CH* chemiluminescence emissions of premixed combustion of methane-air mixtures. International Journal of Hydrogen Energy, 2018, 43, 19778-19791.	3.8	19
18	Evaluation of Vortex Center Location Algorithms for Particle Image Velocimetry Data in an Optical Light-Duty Compression Ignition Engine. , 2018, , .		0

#	Article	IF	CITATIONS
19	Measuring turbocharger compressor inlet backflow through particle image velocimetry. Experimental Thermal and Fluid Science, 2018, 99, 420-432.	1.5	5
20	Effect of laser induced plasma ignition timing and location on Diesel spray combustion. Energy Conversion and Management, 2017, 133, 41-55.	4.4	29
21	Experimental investigation of the entrained droplet velocities in a submerged jet injected into a stagnant water pool. Experimental Thermal and Fluid Science, 2017, 82, 32-41.	1.5	10
22	Soot Characterization of Diesel/Gasoline Blends Injected through a Single Injection System in CI engines. , 2017, , .		3
23	Potential and Limitations of Dual Fuel Operation of High Speed Large Engines. , 2016, , .		0
24	Laser induced plasma methodology for ignition control in direct injection sprays. Energy Conversion and Management, 2016, 120, 144-156.	4.4	10
25	Study of Oxidation and Combustion Characteristics of Iron Nanoparticles under Idealized and Enginelike Conditions. Energy & Engine 1. 2016, 30, 4318-4330.	2.5	21
26	A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 2016, 126, 497-508.	4.4	71
27	Application of UV–Visible Light Absorption and Scattering technique to low absorption fuels under diesel-like conditions. Fuel, 2016, 179, 258-266.	3.4	9
28	An experimental study of the effects of fuel properties on reactive spray evolution using Primary Reference Fuels. Fuel, 2016, 163, 260-270.	3.4	19
29	Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combustion and Flame, 2016, 164, 212-223.	2.8	32
30	ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 2015, 25, 485-517.	0.3	34
31	An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 2015, 103, 1019-1030.	4.4	75
32	The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 2015, 159, 952-961.	3.4	123
33	Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques. Measurement Science and Technology, 2014, 25, 065204.	1.4	6
34	An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combustion and Flame, 2014, 161, 2137-2150.	2.8	40
35	Study of Basic Oxidation and Combustion Characteristics of Aluminum Nanoparticles under Enginelike Conditions. Energy & Enginelike Conditions. Energy & Enginelike Conditions. Energy & Enginelike Conditions.	2.5	37
36	A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Applied Energy, 2013, 104, 568-575.	5.1	47

#	Article	IF	Citations
37	Multi-Component Modeling of Diesel Fuel for Injection and Combustion Simulation. , 2013, , .		4
38	Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures. Mechanical Systems and Signal Processing, 2012, 32, 292-305.	4.4	13
39	Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray. International Journal of Automotive Technology, 2012, 13, 713-724.	0.7	8
40	Measurements of OH* and CH* Chemiluminescence in Premixed Flames in a Constant Volume Combustion Bomb under Autoignition Conditions. Energy & Energy & 2011, 25, 119-129.	2.5	54
41	Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines. Energy, 2011, 36, 5486-5496.	4.5	36
42	Fuel effect on the liquid-phase penetration of an evaporating spray under transient diesel-like conditions. Fuel, 2011, 90, 3369-3381.	3.4	38
43	Determination of the optical depth of a DI diesel spray. Journal of Mechanical Science and Technology, 2011, 25, 209-219.	0.7	9
44	Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions. Fuel, 2011, 90, 1556-1566.	3.4	71
45	The effect of Biodiesel fuel blend rate on the Liquid-phase fuel penetration in Diesel engine conditions., 2009,,.		7
46	Experimental facility and methodology for systematic studies of cold startability in direct injection Diesel engines. Measurement Science and Technology, 2009, 20, 095109.	1.4	7
47	Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation. Optical Engineering, 2009, 48, 013601.	0.5	9
48	A 1D model for the description of mixing-controlled reacting diesel sprays. Combustion and Flame, 2009, 156, 234-249.	2.8	90
49	Experimental Study on RME Blends: Liquid-Phase Fuel Penetration, Chemiluminescence, and Soot Luminosity in Diesel-Like Conditions. Energy & Energy & 23, 5899-5915.	2.5	22
50	Insights on postinjection-associated soot emissions in direct injection diesel engines. Combustion and Flame, 2008, 154, 448-461.	2.8	65
51	A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 2008, 87, 2871-2885.	3.4	143
52	Contribution to the application of two-colour imaging to diesel combustion. Measurement Science and Technology, 2007, 18, 2579-2598.	1.4	84
53	Overview of HCCI diesel engines. , 2007, , 241-267e.		4
54	Segmentation of diesel spray images with log-likelihood ratio test algorithm for non-Gaussian distributions. Applied Optics, 2007, 46, 888.	2.1	40

#	Article	IF	CITATIONS
55	Analysis of calibration techniques for laser-induced incandescence measurements in flames. Measurement Science and Technology, 2006, 17, 3279-3288.	1.4	20
56	Investigation of the Influence of Post-Injection on Diesel Exhaust Aerosol Particle Size Distributions. Aerosol Science and Technology, 2006, 40, 80-96.	1.5	9
57	Limitations on the use of the planar laser induced exciplex fluorescence technique in diesel sprays. Fuel, 2005, 84, 2301-2315.	3.4	28
58	Methodology for measuring exhaust aerosol size distributions from heavy duty diesel engines by means of a scanning mobility particle sizer. Measurement Science and Technology, 2004, 15, 2083-2098.	1.4	18
59	Analysis of the Influence of Diesel Nozzle Geometry in the Injection Rate Characteristic. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 63-71.	0.8	94
60	Optimal feature extraction for segmentation of Diesel spray images. Applied Optics, 2004, 43, 2102.	2.1	8
61	Analysis of the Combustion Process in a EURO III Heavy-Duty Direct Injection Diesel Engine. Journal of Engineering for Gas Turbines and Power, 2002, 124, 636-644.	0.5	5
62	Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays. Optics Express, 2002, 10, 309.	1.7	51
63	Diesel spray image segmentation with a likelihood ratio test. Applied Optics, 2001, 40, 2876.	2.1	88
64	Study of the steady flow produced by direct injection diesel engine intake ports. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215, 285-298.	1.1	10
65	Characterization of Local Fuel Concentrations and Internal Dynamics in D.I. Diesel Sprays. , 0, , .		6
66	Influence of the Fuel Characteristics on the Injection Process in a D.I. Diesel Engine. , 0, , .		32
67	The Influence of Injection Parameters on Diesel Spray Characteristics., 0,,.		57
68	New Modelling Approach For Fast Online Calculations In Sprays. , 0, , .		10
69	THREE DIMENSIONAL CALCULATION OF THE FLOW IN A DI DIESEL ENGINE WITH VARIABLE SWIRL INTAKE PORTS. , 0, , .		6
70	Multidimensional Modeling of the Scavenging and Injection Processes of a Small Two-Stroke Engine Compared to LDV Measurements. , 0, , .		3
71	Influence of the Post-Injection Pattern on Performance, Soot and NOx Emissions in a HD Diesel Engine. , 0, , .		68
72	A Methodology to Estimate the Swirl Number at TDC In DI Diesel Engines: Through the Combination of CFD and Steady Flow Rig Results. , 0 , , .		9

#	Article	IF	CITATIONS
73	Evaporating Diesel Spray Visualization using a Double-pass Shadowgraphy/Schlieren imaging. , 0, , .		22
74	Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions. SAE International Journal of Fuels and Lubricants, 0, 4, 282-297.	0.2	5
75	Lift-Off Length and KL Extinction Measurements of Biodiesel and Fischer-Tropsch Fuels under Quasi-Steady Diesel Engine Conditions. SAE International Journal of Engines, 0, 4, 2278-2297.	0.4	15
76	Schlieren Measurements of the ECN-Spray A Penetration under Inert and Reacting Conditions. , 0, , .		52
77	Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution. SAE International Journal of Engines, 0, 6, 1661-1676.	0.4	22
78	Spray Characterization for Pure Fuel and Binary Blends under Non-Reacting Conditions. , 0 , , .		5
79	Experimental Characterization and Modelling of a Turbocharger Gasoline Engine Compressor By-Pass Valve in Transient Operation. , 0, , .		2
80	Soot Quantification of Single-Hole Diesel Sprays by Means of Extinction Imaging. SAE International Journal of Engines, 0, 8, 2068-2077.	0.4	14
81	An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber. SAE International Journal of Fuels and Lubricants, 0, 10, 394-406.	0.2	9
82	An Experimental Investigation on Spray Mixing and Combustion Characteristics for Spray C/D Nozzles in a Constant Pressure Vessel. , 0, , .		14
83	Combined CFD - PIV Methodology for the Characterization of Air Flow in a Diesel Engine. , 0, , .		1
84	PIV and DBI Experimental Characterization of Air Flow-Spray Interaction and Soot Formation in a Single Cylinder Optical Diesel Engine Using a Real Bowl Geometry Piston., 0, , .		1