Maria E Tata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9149993/publications.pdf

Version: 2024-02-01

623188 580395 62 752 14 25 citations h-index g-index papers 67 67 67 623 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Al foams manufactured by PLA replication and sacrifice. International Journal of Lightweight Materials and Manufacture, 2021, 4, 62-66.	1.3	5
2	Interfacial Reactions between AlSi10 Foam Core and AlSI 316L Steel Sheets Manufactured by In-Situ Bonding Process. Metals, 2021, 11, 1374.	1.0	4
3	Correlation Modeling between Morphology and Compression Behavior of Closed-Cell Al Foams Based on X-ray Computed Tomography Observations. Metals, 2021, 11, 1370.	1.0	8
4	Characterization in Dynamic Load Environment of COTS Synthetic Sapphire Bearings for Application in Magnetic Suspension in Space. Applied Sciences (Switzerland), 2021, 11, 9027.	1.3	1
5	An overview on laser welding of metal foams: techniques, advantages and challenges. Procedia Structural Integrity, 2021, 33, 544-555.	0.3	5
6	Study and prototyping of a permanent magnetic suspension for the alignment by gravity of the elevation angle for the next generation lunar reflector experiment. Planetary and Space Science, 2020, 192, 105049.	0.9	3
7	Deployment of Solar Sails by Joule Effect: Thermal Analysis and Experimental Results. Aerospace, 2020, 7, 180.	1.1	4
8	Mechanical behavior of PCMT and SDP Al foams: a comparison. Procedia Structural Integrity, 2020, 25, 55-62.	0.3	5
9	Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials, 2020, 13, 1856.	1.3	119
10	Mechanical behavior of Nd:YAG laser welded aluminum alloys. Procedia Structural Integrity, 2020, 28, 132-138.	0.3	3
11	HYBRID SOLUTION FOR TWO-WAY INDUCED SHAPE MEMORY ACTUATOR. Acta Metallurgica Slovaca, 2020, 26, 34-36.	0.3	O
12	A Novel Self-Deployable Solar Sail System Activated by Shape Memory Alloys. Aerospace, 2019, 6, 78.	1.1	15
13	Design and characterization of linear shape memory alloy actuator with modular stroke. Procedia Structural Integrity, 2019, 18, 223-230.	0.3	5
14	Shape Memory Activated Self-Deployable Solar Sails: Small-Scale Prototypes Manufacturing and Planarity Analysis by 3D Laser Scanner. Actuators, 2019, 8, 38.	1.2	16
15	A novel methodology for solar sail opening employing shape memory alloy elements. Journal of Intelligent Material Systems and Structures, 2018, 29, 1793-1798.	1.4	12
16	Parameters Affecting Energy Absorption in Metal Foams. Materials Science Forum, 2018, 941, 1552-1557.	0.3	2
17	Explosion Welding: Process Evolution and Parameters Optimization. Materials Science Forum, 2018, 941, 1558-1564.	0.3	5
18	LEAD AND LEAD ALLOYS FOAMS PRODUCTION. Acta Metallurgica Slovaca, 2018, 24, 347-352.	0.3	5

#	Article	IF	Citations
19	Design and Characterization of a Small-Scale Solar Sail Prototype by Integrating NiTi SMA and Carbon Fibre Composite. Advances in Materials Science and Engineering, 2017, 2017, 1-6.	1.0	9
20	Evaluation of Structural Stability of Materials through Mechanical Spectroscopy: Four Case Studies. Metals, 2016, 6, 306.	1.0	3
21	Optimization of the process parameters for the manufacturing of open-cells iron foams with high energy absorption. Procedia Structural Integrity, 2016, 2, 2277-2282.	0.3	6
22	Design and characterization of a small-scale solar sail deployed by NiTi Shape Memory actuators. Procedia Structural Integrity, 2016, 2, 1451-1456.	0.3	10
23	Effect of Temperature on the Mechanical Behaviour of Ni-Ti Shape Memory Sheets., 2016,, 433-439.		0
24	Weldability of austenitic stainless steel by metal arc welding with different shielding gas. Procedia Structural Integrity, 2016, 2, 3508-3514.	0.3	23
25	Investigation of skin-core joints in aluminium foam sandwich panels by EDS and XPS. Surface and Interface Analysis, 2016, 48, 479-482.	0.8	1
26	Manufacturing and Characterization of AlSi Foams as Core Materials. Procedia Engineering, 2015, 109, 219-227.	1.2	6
27	Metallurgical modifications and residual stress in welded steel with average carbon content. Welding International, 2015, 29, 124-130.	0.3	4
28	IR Thermography and Resistivity Investigations on Ni-Ti Shape Memory Alloy. Key Engineering Materials, 2014, 605, 23-26.	0.4	19
29	Increasing Performances of En AB-46000 by Squeeze Casting. Key Engineering Materials, 2014, 611-612, 629-636.	0.4	0
30	A Weldability Study of Al–Cu–Li 2198 Alloy. Metallurgist, 2014, 57, 1134-1141.	0.2	14
31	Chacterization of Cu Tube Filled with al Alloy Foam by Means of X-Ray Computer Tomography. , 2014, , 613-620.		0
32	Recycling of Exhaust Batteries in Lead-Foam Electrodes. , 2013, , 272-278.		1
33	Mechanical and metallurgical characterization of 8090 Al–Li alloy welded joints. Metallurgist, 2012, 56, 75-84.	0.2	4
34	Application of neural network to the materials characterisation. International Journal of Computational Materials Science and Surface Engineering, 2010, 3, 96.	0.2	1
35	New capabilities in the numerical simulation of aluminium alloy casting processes. International Journal of Computational Materials Science and Surface Engineering, 2010, 3, 224.	0.2	2
36	IR thermography characterization of residual stress in plastically deformed metallic components. Applied Physics A: Materials Science and Processing, 2010, 98, 461-465.	1.1	22

#	Article	IF	Citations
37	Nitinol one-way shape memory springs: Thermomechanical characterization and actuator design. Sensors and Actuators A: Physical, 2010, 157, 113-117.	2.0	42
38	Microstructural modifications in -brass targets after small charge explosions. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 76-81.	0.7	0
39	Lattice expansion of Ti–6Al–4V by nitrogen and oxygen absorption. Materials Characterization, 2008, 59, 334-337.	1.9	44
40	Mechanical and surface properties of Ti-sputtered thin films. International Journal of Surface Science and Engineering, 2008, 2, 366.	0.4	4
41	Effect of powder mix composition on Al foam morphology. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2008, 222, 131-140.	0.7	12
42	Cooling rate inference in aluminum alloy squeeze casting. Materials Letters, 2007, 61, 2969-2972.	1.3	33
43	Microstructural Effects in Face-Centered-Cubic Alloys after Small Charge Explosions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2869-2884.	1.1	9
44	Superplasticity in PbSn60: Experimental and neural network implementation. Computational Materials Science, 2006, 37, 226-233.	1.4	15
45	Metal Objects Mapping After Small Charge Explosions. A Study on AISI 304Cu Steel with Two Different Grain Sizes. Journal of Forensic Sciences, 2006, 51, 520-531.	0.9	2
46	Mechanical twins in 304 stainless steel after small-charge explosions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 424, 23-32.	2.6	11
47	AISI 304 steel: anomalous evolution of martensitic phase following heat treatments at 400°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 202-206.	2.6	19
48	Influence of Ti coatings on the fatigue behaviour of Al-Matrix MMCs. Part II: FEM simulations. Composites Part B: Engineering, 2005, 36, 446-454.	5.9	2
49	Characterization of Eurofer-97 TIG-welded joints by FIMEC indentation tests. Journal of Nuclear Materials, 2004, 329-333, 1529-1533.	1.3	13
50	Workability of Ti–6Al–4V alloy at high temperatures and strain rates. Materials Letters, 2004, 58, 3622-3629.	1.3	122
51	Pressure effect on Al alloy cast behaviour: microstructures and mechanical properties. International Journal of Materials and Product Technology, 2004, 20, 345.	0.1	10
52	Structural and mechanical properties of welded joints of reduced activation martensitic steels. Journal of Nuclear Materials, 2002, 307-311, 1563-1567.	1.3	19
53	Influence of Si, Ni and Co additions on gold alloy for investment cast process. Journal of Alloys and Compounds, 2001, 325, 252-258.	2.8	4
54	H-induced C–Cr cluster redistribution in MANET steel. Journal of Alloys and Compounds, 2000, 310, 209-213.	2.8	6

#	Article	IF	CITATIONS
55	Martensite formation during heat treatments of AISI 304 steel with biphasic structure. Materials Science & Departments of AISI 304 steel with biphasic structure. Materials Science & Department of Processing, 1999, 273-275, 443-447.	2.6	15
56	Distribution of C–Cr associates and mechanical stability of Cr martensitic steels. Journal of Nuclear Materials, 1998, 258-263, 1167-1172.	1.3	6
57	Internal friction and Mössbauer study of C–Cr associates in MANET steel. Journal of Materials Research, 1997, 12, 296-299.	1.2	3
58	Effects of thermal treatments on the ductile to brittle transition of MANET steel. Journal of Nuclear Materials, 1996, 233-237, 248-252.	1.3	5
59	Internal Friction Study on Manet Steel: Effects of Cooling Rate from Austenitic Domain. European Physical Journal Special Topics, 1996, 06, C8-115-C8-118.	0.2	1
60	C-Cr Associates and Carbide Precipitation in Manet Steel. European Physical Journal Special Topics, 1996, 06, C8-155-C8-158.	0.2	1
61	MANET steel: thermal treatments and Qâ^1 spectrum evolution. Materials Letters, 1995, 25, 249-255.	1.3	4
62	Dislocation Density Effect on Thermal Diffusivity of AISI 316 Steel. Key Engineering Materials, 0, 605, 27-30.	0.4	2