Shengyu Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9149407/publications.pdf

Version: 2024-02-01

		159585	133252
58	3,622	30	59
papers	citations	h-index	g-index
59	59	59	1011
all docs	docs citations	times ranked	citing authors
59 all docs	59 docs citations	59 times ranked	1011 citing authors

#	Article	IF	CITATIONS
1	Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization. ACS Catalysis, 2016, 6, 428-441.	11.2	418
2	Highly Robust Palladium(II) αâ€Diimine Catalysts for Slowâ€Chainâ€Walking Polymerization of Ethylene and Copolymerization with Methyl Acrylate. Angewandte Chemie - International Edition, 2015, 54, 9948-9953.	13.8	309
3	Direct Synthesis of Functionalized Highâ€Molecularâ€Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers. Angewandte Chemie - International Edition, 2016, 55, 13281-13285.	13.8	263
4	Systematic Investigations of Ligand Steric Effects on $\hat{I}\pm$ -Diimine Palladium Catalyzed Olefin Polymerization and Copolymerization. Macromolecules, 2016, 49, 8855-8862.	4.8	223
5	Direct Synthesis of Thermoplastic Polyolefin Elastomers from Nickel-Catalyzed Ethylene Polymerization. Macromolecules, 2017, 50, 6074-6080.	4.8	137
6	Direct Synthesis of Polar-Functionalized Linear Low-Density Polyethylene (LLDPE) and Low-Density Polyethylene (LDPE). Macromolecules, 2018, 51, 4040-4048.	4.8	132
7	Ethylene Polymerization and Copolymerization with Polar Monomers by Cationic Phosphine Phosphonic Amide Palladium Complexes. ACS Catalysis, 2015, 5, 5932-5937.	11.2	124
8	Investigations of the Ligand Electronic Effects on $\hat{I}\pm$ -Diimine Nickel(II) Catalyzed Ethylene Polymerization. Polymers, 2016, 8, 37.	4.5	116
9	Palladium-Catalyzed Direct Synthesis of Various Branched, Carboxylic Acid-Functionalized Polyolefins: Characterization, Derivatization, and Properties. Macromolecules, 2018, 51, 6818-6824.	4.8	104
10	Ethylene Polymerization and Copolymerization Using Nickel 2-Iminopyridine- <i>N</i> -oxide Catalysts: Modulation of Polymer Molecular Weights and Molecular-Weight Distributions. Macromolecules, 2018, 51, 49-56.	4.8	100
11	Systematic Investigations of Ligand Steric Effects on $\hat{I}\pm$ -Diimine Nickel Catalyzed Olefin Polymerization and Copolymerization. Organometallics, 2019, 38, 2919-2926.	2.3	99
12	Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chemical Communications, 2016, 52, 9113-9116.	4.1	94
13	Synthesis of Various Branched Ultra-High-Molecular-Weight Polyethylenes Using Sterically Hindered Acenaphthene-Based α-Diimine Ni(II) Catalysts. Organometallics, 2018, 37, 2442-2449.	2.3	88
14	Direct Synthesis of Polar Functionalized Polyethylene Thermoplastic Elastomer. Macromolecules, 2020, 53, 2539-2546.	4.8	87
15	Flexible cycloalkyl substituents in insertion polymerization with \hat{l}_{\pm} -diimine nickel and palladium species. Polymer Chemistry, 2020, 11, 1393-1400.	3.9	78
16	Ethylene polymerization by salicylaldimine nickel(<scp>ii</scp>) complexes containing a dibenzhydryl moiety. Dalton Transactions, 2016, 45, 1496-1503.	3.3	74
17	Bulky yet flexible substituents in insertion polymerization with \hat{l}_{\pm} -diimine nickel and palladium systems. Polymer Chemistry, 2019, 10, 4866-4871.	3.9	74
18	π–π interaction effect in insertion polymerization with α-Diimine palladium systems. Journal of Catalysis, 2019, 378, 184-191.	6.2	66

#	Article	IF	CITATIONS
19	Large-scale synthesis of novel sterically hindered acenaphthene-based î±-diimine ligands and their application in coordination chemistry. Journal of Organometallic Chemistry, 2018, 859, 58-67.	1.8	59
20	A Selfâ€Supporting Strategy for Gasâ€Phase and Slurryâ€Phase Ethylene Polymerization using Lateâ€Transitionâ€Metal Catalysts. Angewandte Chemie - International Edition, 2020, 59, 14884-14890.	13.8	55
21	A remote nonconjugated electron effect in insertion polymerization with \hat{l}_{\pm} -diimine nickel and palladium species. Polymer Chemistry, 2020, 11, 2692-2699.	3.9	52
22	Efficient Suppression of Chain Transfer and Branching via <i>C</i> _s â€Type Shielding in a Neutral Nickel(II) Catalyst. Angewandte Chemie - International Edition, 2021, 60, 4018-4022.	13.8	51
23	Direct Synthesis of Functionalized Highâ€Molecularâ€Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers. Angewandte Chemie, 2016, 128, 13475-13479.	2.0	48
24	Highly efficient incorporation of polar comonomers in copolymerizations with ethylene using iminopyridyl palladium system. Journal of Catalysis, 2021, 393, 51-59.	6.2	40
25	Suppression of chain transfer <i>via</i> a restricted rotation effect of dibenzosuberyl substituents in polymerization catalysis. Polymer Chemistry, 2021, 12, 3240-3249.	3.9	38
26	Reversion of the chain walking ability of \hat{l}_{\pm} -diimine nickel and palladium catalysts with bulky diarylmethyl substituents. Journal of Organometallic Chemistry, 2021, 932, 121649.	1.8	37
27	The synergistic effect of rigid and flexible substituents on insertion polymerization with α-diimine nickel and palladium catalysts. Polymer Chemistry, 2021, 12, 4643-4653.	3.9	36
28	Direct Synthesis of Branched Carboxylic Acid Functionalized Poly(1-octene) by î±-Diimine Palladium Catalysts. Polymers, 2017, 9, 122.	4.5	35
29	8-Arylnaphthyl substituent retarding chain transfer in insertion polymerization with unsymmetrical \hat{l}_{\pm} -diimine systems. Polymer Chemistry, 2020, 11, 7199-7206.	3.9	34
30	Flexible "Sandwich―(8-Alkylnaphthyl α-Diimine) Catalysts in Insertion Polymerization. Inorganic Chemistry, 2021, 60, 5673-5681.	4.0	33
31	Synthesis of Branched Polyethylene and Ethylene-MA Copolymers Using Unsymmetrical Iminopyridyl Nickel and Palladium Complexes. Organometallics, 2021, 40, 3033-3041.	2.3	32
32	Monoligated vs Bisligated Effect in Iminopyridyl Nickel Catalyzed Ethylene Polymerization. Organometallics, 2019, 38, 2800-2806.	2.3	31
33	Effect of aryl orientation on olefin polymerization in iminopyridyl catalytic system. Polymer, 2020, 200, 122607.	3.8	31
34	Synthesis of polyethylene thermoplastic elastomer by using robust <scp>αâ€diimine</scp> Ni(<scp>II</scp>) catalysts with abundant <scp>^tBu</scp> substituents. Journal of Polymer Science, 2021, 59, 638-645.	3.8	30
35	Efficient incorporation of a polar comonomer for direct synthesis of hyperbranched polar functional ethylene oligomers. New Journal of Chemistry, 2021, 45, 4024-4031.	2.8	29
36	Rotationâ€restricted strategy to synthesize high molecular weight polyethylene using iminopyridyl nickel and palladium catalyst. Applied Organometallic Chemistry, 2021, 35, e6140.	3.5	26

#	Article	IF	CITATIONS
37	A Dual Steric Enhancement Strategy in α-Diimine Nickel and Palladium Catalysts for Ethylene Polymerization and Copolymerization. Organometallics, 2022, 41, 124-132.	2.3	23
38	Facile Synthesis of Hyperbranched Ethylene Oligomers and Ethylene/Methyl Acrylate Co-oligomers with Different Microscopic Chain Architectures. ACS Polymers Au, 2022, 2, 88-96.	4.1	21
39	Synthesis of functional and hyperbranched ethylene oligomers using unsymmetrical α-diimine palladium catalysts. European Polymer Journal, 2019, 115, 185-192.	5.4	19
40	Direct synthesis of hyperbranched ethene oligomers and etheneâ€∢scp>MA coâ€oligomers using iminopyridyl systems with weak neighboring group interactions. Journal of Polymer Science, 2022, 60, 1944-1953.	3.8	19
41	Investigations of ligand backbone effects on bulky diarylmethyl-based nickel(II) and palladium(II) catalyzed ethylene polymerization and copolymerization. Journal of Organometallic Chemistry, 2021, 952, 122046.	1.8	18
42	Synthesis of fluorinated polyethylene of different topologies <i>via</i> insertion polymerization with semifluorinated acrylates. Polymer Chemistry, 2020, 11, 6335-6342.	3.9	17
43	A rigid-flexible double-layer steric strategy for ethylene (co)oligomerization with pyridine-imine Ni(<scp>ii</scp>) and Pd(<scp>ii</scp>) complexes. New Journal of Chemistry, 2022, 46, 8669-8678.	2.8	16
44	Second coordination sphere effect of benzothiophene substituents on chain transfer and chain walking in ethylene insertion polymerization. Polymer, 2022, 245, 124707.	3.8	16
45	Synthesis of thermoplastic polyethylene elastomers and ethylene–methyl acrylate copolymers using methylene-bridged binuclear bulky dibenzhydryl α-diimine Ni(II) and Pd(II) catalysts. European Polymer Journal, 2022, 168, 111105.	5.4	14
46	Electronic Effects of the Backbone on Bis(imino)pyridyliron(II) atalyzed Ethylene Polymerization. European Journal of Inorganic Chemistry, 2018, 2018, 4887-4892.	2.0	12
47	Facile Access to Ultra-Highly Branched Polyethylenes Using Hybrid "Sandwich―Ni(II) and Pd(II) Catalysts. Journal of Catalysis, 2022, , .	6.2	12
48	Efficient suppression of the chain transfer reaction in ethylene coordination polymerization with dibenzosuberyl substituents. Polymer Chemistry, 2022, 13, 4090-4099.	3.9	12
49	Direct synthesis of various polar functionalized polypropylene materials with tunable molecular weights and high incorporation ratios. Polymer Chemistry, 2021, 12, 5495-5504.	3.9	10
50	Exploring the Relationship between the Polyethylene Microstructure and Spatial Structure of \hat{l}_{\pm} -Diimine Pd(II) Catalysts via a Hybrid Steric Strategy. Inorganic Chemistry, 2022, 61, 6799-6806.	4.0	10
51	Flexible Axial Shielding Strategy for the Synthesis of High-Molecular-Weight Polyethylene and Polar Functionalized Polyethylene with Pyridine-Imine Ni(II) and Pd(II) Complexes. Organometallics, 2022, 41, 2042-2049.	2.3	10
52	Pd(ii)-catalyzed, controllable Câ€"H mono-/diarylation of aryl tetrazoles: concise synthesis of Losartan. Organic and Biomolecular Chemistry, 2015, 13, 3198-3201.	2.8	9
53	Propylene polymerization and copolymerization with polar monomers facilitated by flexible cycloalkyl substituents in α-diimine systems. Polymer, 2022, 254, 125076.	3.8	9
54	Synthesis of High-Molecular-Weight Branched Polyethylene Using a Hybrid "Sandwich―Pyridine-Imine Ni(II) Catalyst. Frontiers in Chemistry, 2022, 10, .	3.6	8

SHENGYU DAI

#	Article	IF	CITATIONS
55	A Selfâ€Supporting Strategy for Gasâ€Phase and Slurryâ€Phase Ethylene Polymerization using Lateâ€Transitionâ€Metal Catalysts. Angewandte Chemie, 2020, 132, 14994-15000.	2.0	7
56	Synthesis of highly branched polyethylene and ethylene-MA copolymers using hybrid bulky \hat{l}_{\pm} -diimine Pd(II) catalysts. Journal of Organometallic Chemistry, 2021, 956, 122118.	1.8	7
57	The electronic effects on unsymmetrical Bis(imino)pyridyl iron(ii) catalyzed ethylene polymerization. Journal of Organometallic Chemistry, 2020, 923, 121457.	1.8	6
58	Efficient Suppression of Chain Transfer and Branching via C s â€√ype Shielding in a Neutral Nickel(II) Catalyst. Angewandte Chemie, 2021, 133, 4064-4068.	2.0	5