Silvano Del Gobbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9149174/publications.pdf

Version: 2024-02-01

21 papers 1,094 citations

16 h-index 713466 21 g-index

21 all docs

21 docs citations

times ranked

21

1657 citing authors

#	Article	IF	CITATIONS
1	Microwave-Assisted Non-aqueous and Low-Temperature Synthesis of Titania and Niobium-Doped Titania Nanocrystals and Their Application in Halide Perovskite Solar Cells as Electron Transport Layers. ACS Omega, 2022, 7, 6616-6626.	3.5	2
2	Simple Halogenâ€Free, Biobased Organic Salts Convert Glycidol to Glycerol Carbonate under Atmospheric CO ₂ Pressure. ChemSusChem, 2022, 15, .	6.8	12
3	Exploring the potential of group III salen complexes for the conversion of CO2 under ambient conditions. Catalysis Today, 2021, 375, 324-334.	4.4	54
4	Dataset for the synthesis and application of single-component heterogeneous catalysts based on zinc and tin for the cycloaddition of pure, diluted, and impure CO2 to epoxides under mild conditions. Data in Brief, 2021, 37, 107190.	1.0	2
5	Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate. Journal of Industrial and Engineering Chemistry, 2021, 104, 43-60.	5.8	25
6	Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates. Chemical Engineering Journal, 2021, 422, 129930.	12.7	51
7	Nanoparticles of aromatic biopolymers catalyze CO ₂ cycloaddition to epoxides under atmospheric conditions. Sustainable Energy and Fuels, 2021, 5, 5431-5444.	4.9	19
8	Simultaneous Controlled Seeded-Growth and Doping of ZnO Nanorods with Aluminum and Cerium: Feasibility Assessment and Effect on Photocatalytic Activity. Crystal Growth and Design, 2020, 20, 5508-5525.	3.0	18
9	In-Suspension Growth of ZnO Nanorods with Tunable Length and Diameter Using Polymorphic Seeds. Crystal Growth and Design, 2019, 19, 6792-6800.	3.0	13
10	Versatile functionalization of polymer nanoparticles with carbonate groups <i>via</i> hydroxyurethane linkages. Polymer Chemistry, 2019, 10, 3571-3584.	3.9	41
11	Bismuthâ€Based Perovskiteâ€Inspired Solar Cells: In Situ Diagnostics Reveal Similarities and Differences in the Film Formation of Bismuth―and Leadâ€Based Films. Solar Rrl, 2019, 3, 1800305.	5.8	41
12	Synthesis of well-defined yttrium-based Lewis acids by capturing a reaction intermediate and catalytic application for cycloaddition of CO ₂ to epoxides under atmospheric pressure. Catalysis Science and Technology, 2019, 9, 6152-6165.	4.1	51
13	Physico-chemical investigation of ZnS thin-film deposited from ligand-free nanocrystals synthesized by non-hydrolytic thio-sol–gel. Nanotechnology, 2018, 29, 385603.	2.6	3
14	Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. ACS Applied Materials & Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells.	8.0	145
15	Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 7759-7763.	10.3	45
16	Planar heterojunction perovskite solar cell based on CdS electron transport layer. Thin Solid Films, 2017, 636, 512-518.	1.8	28
17	Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylaminoâ€6ubstituted Molecule as PEDOT:PSS Replacement. Advanced Energy Materials, 2016, 6, 1502101.	19.5	78
18	Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	21

#	Article	IF	CITATIONS
19	Colloidal Sb ₂ S ₃ nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 6809-6814.	10.3	21
20	The Silicon:Colloidal Quantum Dot Heterojunction. Advanced Materials, 2015, 27, 7445-7450.	21.0	55
21	Ag ₂₉ (BDT) ₁₂ (TPP) ₄ : A Tetravalent Nanocluster. Journal of the American Chemical Society, 2015, 137, 11970-11975.	13.7	369