Liheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9149120/publications.pdf

Version: 2024-02-01

		361388	501174
28	890	20	28
papers	citations	h-index	g-index
20	20	20	903
28	28	28	802
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Sorption characteristics of CTMA–bentonite complexes as controlled by surfactant packing density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 221-227.	4.7	69
2	Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA–montmorillonite hybrids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 304, 41-48.	4.7	69
3	Ammonium removal using a calcined natural zeolite modified with sodium nitrate. Journal of Hazardous Materials, 2020, 393, 122481.	12.4	65
4	Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 2009, 331, 8-14.	9.4	51
5	Column adsorption of 2-naphthol from aqueous solution using carbon nanotube-based composite adsorbent. Chemical Engineering Journal, 2018, 335, 450-457.	12.7	46
6	Transport of micro- and nanoplastics in the environment: Trojan-Horse effect for organic contaminants. Critical Reviews in Environmental Science and Technology, 2022, 52, 810-846.	12.8	45
7	Structure of surfactant–clay complexes and their sorptive characteristics toward HOCs. Separation and Purification Technology, 2008, 63, 156-162.	7.9	37
8	Highly Effective Removal of Tetracycline from Water by Hierarchical Porous Carbon: Batch and Column Adsorption. Industrial & Engineering Chemistry Research, 2019, 58, 20036-20046.	3.7	37
9	Organo-layered double hydroxides for the removal of polycyclic aromatic hydrocarbons from soil washing effluents containing high concentrations of surfactants. Journal of Hazardous Materials, 2019, 373, 678-686.	12.4	35
10	Fabrication and application of hierarchical porous carbon for the adsorption of bulky dyes. Microporous and Mesoporous Materials, 2019, 290, 109651.	4.4	34
11	Adsorption–desorption behavior of naphthalene onto CDMBA modified bentonite: Contribution of the π–π interaction. Applied Clay Science, 2014, 100, 29-34.	5.2	33
12	Synergistic role of inherent calcium and iron minerals in paper mill sludge biochar for phosphate adsorption. Science of the Total Environment, 2022, 834, 155193.	8.0	33
13	Adsorption Characteristics of a Novel Carbon-Nanotube-Based Composite Adsorbent toward Organic Pollutants. Industrial & Description (2015, 54, 2379-2384).	3.7	32
14	Retention and transport behavior of microplastic particles in water-saturated porous media. Science of the Total Environment, 2022, 808, 152154.	8.0	32
15	Effect of CNT content on physicochemical properties and performance of CNT composite polysulfone membranes. Chemical Engineering Research and Design, 2017, 121, 92-98.	5.6	29
16	Highly effective adsorption of antibiotics from water by hierarchically porous carbon: Effect of nanoporous geometry. Environmental Pollution, 2021, 274, 116591.	7.5	29
17	Insights into the adsorption mechanism of tetracycline on hierarchically porous carbon and the effect of nanoporous geometry. Chemical Engineering Journal, 2022, 437, 135454.	12.7	28
18	Removal of phosphate from water by paper mill sludge biochar. Environmental Pollution, 2022, 293, 118521.	7.5	25

#	Article	IF	CITATIONS
19	Removal of p-chlorophenol from aqueous solutions by carbon nanotube hybrid polymer adsorbents. Chemical Engineering Research and Design, 2017, 123, 76-83.	5.6	24
20	Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2295-2328.	12.8	24
21	Functionalizing biochar by Co-pyrolysis shaddock peel with red mud for removing acid orange 7 from water. Environmental Pollution, 2022, 299, 118893.	7.5	23
22	Structures of hexamethonium exchanged bentonite and the sorption characteristics for phenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 307, 1-6.	4.7	22
23	Role and fate of the lead during the conversion of calcium sulfate dihydrate to α-hemihydrate whiskers in ethylene glycol-water solutions. Chemical Engineering Journal, 2019, 372, 74-81.	12.7	20
24	Sodium Cation-Mediated Crystallization of α-Hemihydrate Whiskers from Gypsum in Ethylene Glycol–Water Solutions. Crystal Growth and Design, 2018, 18, 6694-6701.	3.0	16
25	Influence Factors on the Formation of Acrylamide in the Amino Acid/Sugar Chemical Model System. Journal of Food and Nutrition Research (Newark, Del), 2014, 2, 344-348.	0.3	11
26	Enhanced removal of ammonium from water using sulfonated reed waste biochar-A lab-scale investigation. Environmental Pollution, 2022, 292, 118412.	7. 5	11
27	Fabrication of MWCNTs-polysulfone composite membranes and its application in the removal of bisphenol A. Materials Research Express, 2018, 5, 065101.	1.6	6
28	Construction of carbon nanotube-based microcapsules by self-assembly. Environmental Chemistry Letters, 2014, 12, 359-364.	16.2	4