
Enrique Iglesia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9148614/publications.pdf Version: 2024-02-01

ENDIOLIE CLESIA

#	Article	IF	CITATIONS
1	Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General, 1997, 161, 59-78.	2.2	1,324
2	Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. Journal of Catalysis, 1998, 178, 499-510.	3.1	1,036
3	lsotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis, 2004, 224, 370-383.	3.1	799
4	Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures. Journal of Physical Chemistry B, 1999, 103, 630-640.	1.2	627
5	Structure and Catalytic Properties of Supported Vanadium Oxides: Support Effects on Oxidative Dehydrogenation Reactions. Journal of Catalysis, 1999, 181, 205-216.	3.1	573
6	Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. Journal of Catalysis, 1992, 137, 212-224.	3.1	506
7	CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 2010, 272, 287-297.	3.1	487
8	Structure and Reactivity of PdOx/ZrO2Catalysts for Methane Oxidation at Low Temperatures. Journal of Catalysis, 1998, 179, 431-442.	3.1	455
9	Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters. Journal of the American Chemical Society, 2011, 133, 4498-4517.	6.6	448
10	Structural and Catalytic Characterization of Solid Acids Based on Zirconia Modified by Tungsten Oxide. Journal of Catalysis, 1999, 181, 57-72.	3.1	424
11	Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 1993, 143, 345-368.	3.1	383
12	Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. Journal of Catalysis, 2004, 225, 116-127.	3.1	368
13	Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts. Journal of Catalysis, 1998, 179, 192-202.	3.1	366
14	Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters and Turnover Rate Comparisons among Noble Metals. Journal of Physical Chemistry B, 2004, 108, 4094-4103.	1.2	364
15	Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie - International Edition, 2006, 45, 1617-1620.	7.2	345
16	Promoted Iron-Based Catalysts for the Fischer–Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties. Journal of Catalysis, 2002, 206, 202-217.	3.1	332
17	Transport-enhanced \$alpha;-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. Journal of Catalysis, 1991, 129, 238-256.	3.1	313
18	Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species. Journal of Catalysis, 1993, 144, 238-253.	3.1	303

#	Article	IF	CITATIONS
19	Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM5 Catalysts for Nonoxidative Methane Conversion. Journal of Physical Chemistry B, 1999, 103, 5787-5796.	1.2	303
20	Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 2007, 129, 4919-4924.	6.6	302
21	Mercaptosilane-Assisted Synthesis of Metal Clusters within Zeolites and Catalytic Consequences of Encapsulation. Journal of the American Chemical Society, 2010, 132, 9129-9137.	6.6	301
22	Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 2002, 208, 139-149.	3.1	298
23	Isotopic Tracer and Kinetic Studies of Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. Journal of Catalysis, 1999, 186, 325-333.	3.1	295
24	Formic Acid Dehydrogenation on Auâ€Based Catalysts at Nearâ€Ambient Temperatures. Angewandte Chemie - International Edition, 2009, 48, 4800-4803.	7.2	292
25	Catalytic Consequences of Spatial Constraints and Acid Site Location for Monomolecular Alkane Activation on Zeolites. Journal of the American Chemical Society, 2009, 131, 1958-1971.	6.6	277
26	Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides. Journal of Physical Chemistry B, 2000, 104, 1292-1299.	1.2	276
27	Title is missing!. Catalysis Letters, 2001, 77, 197-205.	1.4	271
28	Structure and properties of vanadium oxide-zirconia catalysts for propane oxidative dehydrogenation. Journal of Catalysis, 1998, 177, 343-351.	3.1	267
29	Structure and Properties of Oxidative Dehydrogenation Catalysts Based on MoO3/Al2O3. Journal of Catalysis, 2001, 198, 232-242.	3.1	265
30	Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5. Catalysis Today, 1996, 31, 207-231.	2.2	264
31	Selectivity Control and Catalyst Design in the Fischer-Tropsch Synthesis: Sites, Pellets, and Reactors. Advances in Catalysis, 1993, 39, 221-302.	0.1	263
32	A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 2008, 41, 559-567.	7.6	257
33	Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH ₄ Reactions on Pd Catalysts. Journal of the American Chemical Society, 2013, 135, 15425-15442.	6.6	256
34	The Relationship between the Electronic and Redox Properties of Dispersed Metal Oxides and Their Turnover Rates in Oxidative Dehydrogenation Reactions. Journal of Catalysis, 2002, 209, 35-42.	3.1	255
35	Genesis of BrÃ,nsted Acid Sites during Dehydration of 2-Butanol on Tungsten Oxide Catalysts. Journal of Catalysis, 2002, 205, 44-57.	3.1	247
36	Synthesis and Catalytic Properties of Metal Clusters Encapsulated within Small-Pore (SOD, GIS, ANA) Zeolites. Journal of the American Chemical Society, 2012, 134, 17688-17695.	6.6	245

#	Article	IF	CITATIONS
37	Methane Conversion to Aromatics on Mo/H-ZSM5:Â Structure of Molybdenum Species in Working Catalysts. Journal of Physical Chemistry B, 2001, 105, 506-513.	1.2	242
38	The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 2013, 49, 3491.	2.2	219
39	Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 2014, 312, 58-68.	3.1	216
40	Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 2014, 136, 15280-15290.	6.6	211
41	The Strength of BrÃ,nsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 2015, 5, 5741-5755.	5.5	209
42	CO Chemisorption and Dissociation at High Coverages during CO Hydrogenation on Ru Catalysts. Journal of the American Chemical Society, 2013, 135, 6107-6121.	6.6	204
43	Solid acid catalysts based on supported tungsten oxides. Topics in Catalysis, 1998, 6, 87-99.	1.3	199
44	The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 2012, 45, 229-238.	7.6	197
45	Selective isomerization of alkanes on supported tungsten oxide acids. Studies in Surface Science and Catalysis, 1996, 101, 533-542.	1.5	196
46	The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chemical Engineering Science, 2004, 59, 2947-2960.	1.9	189
47	Reaction Pathways and Rate-Determining Steps in Reactions of Alkanes on H-ZSM5 and Zn/H-ZSM5 Catalysts. Journal of Catalysis, 1999, 182, 117-128.	3.1	188
48	Reactivity of Chemisorbed Oxygen Atoms and Their Catalytic Consequences during CH ₄ –O ₂ Catalysis on Supported Pt Clusters. Journal of the American Chemical Society, 2011, 133, 15958-15978.	6.6	184
49	Selective Oxidation of Methanol and Ethanol on Supported Ruthenium Oxide Clusters at Low Temperaturesâ€. Journal of Physical Chemistry B, 2005, 109, 2155-2163.	1.2	183
50	Raman and X-Ray Absorption Studies of Mo Species in Mo/H-ZSM5 Catalysts for Non-Oxidative CH4 Reactions. Journal of Catalysis, 2000, 191, 373-383.	3.1	181
51	The Effects of Silanation of External Acid Sites on the Structure and Catalytic Behavior of Mo/H–ZSM5. Journal of Catalysis, 2002, 206, 14-22.	3.1	181
52	Effects of Support Composition and Pretreatment Conditions on the Structure of Vanadia Dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2. Journal of Physical Chemistry B, 2000, 104, 1516-1528.	1.2	180
53	Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. Journal of Catalysis, 2011, 278, 78-93.	3.1	178
54	Reaction Pathways and Site Requirements for the Activation and Chemical Conversion of Methane on Ruâ^'Based Catalysts. Journal of Physical Chemistry B, 2004, 108, 7253-7262.	1.2	173

#	Article	IF	CITATIONS
55	Reactions of neopentane, methylcyclohexane, and 3,3-dimethylpentane on tungsten carbides: The effect of surface oxygen on reaction pathways. Journal of Catalysis, 1991, 130, 86-105.	3.1	163
56	Structure and Properties of Zirconia-Supported Molybdenum Oxide Catalysts for Oxidative Dehydrogenation of Propane. Journal of Catalysis, 2000, 189, 421-430.	3.1	163
57	Support effects on BrÃ,nsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains. Journal of Catalysis, 2004, 227, 479-491.	3.1	161
58	Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 2015, 27, 2056-2066.	3.2	159
59	Kinetic coupling and hydrogen surface fugacities in heterogeneous catalysis: I. Alkane reactions on Te/NaX, H-ZSM5, and Ga/H-ZSM5. Journal of Catalysis, 1992, 134, 549-571.	3.1	157
60	Kinetic Isotopic Effects in Oxidative Dehydrogenation of Propane on Vanadium Oxide Catalysts. Journal of Catalysis, 2000, 192, 197-203.	3.1	152
61	Bifunctional reactions of alkanes on tungsten carbides modified by chemisorbed oxygen. Journal of Catalysis, 1991, 131, 523-544.	3.1	149
62	Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischerâ^'Tropsch Synthesis. Journal of Physical Chemistry B, 2001, 105, 5743-5750.	1.2	149
63	Isotopic and Chemical Titration of Acid Sites in Tungsten Oxide Domains Supported on Zirconia. Journal of Physical Chemistry B, 2001, 105, 1320-1330.	1.2	148
64	Control of Metal Dispersion and Structure by Changes in the Solid-State Chemistry of Supported Cobalt Fischer–Tropsch Catalysts. Topics in Catalysis, 2003, 26, 101-109.	1.3	146
65	An Investigation of the Effects of Water on Rate and Selectivity for the Fischer–Tropsch Synthesis on Cobalt-Based Catalysts. Journal of Catalysis, 2002, 211, 422-433.	3.1	144
66	Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts. Microporous and Mesoporous Materials, 2000, 35-36, 495-509.	2.2	142
67	Selective One-Step Synthesis of Dimethoxymethane via Methanol or Dimethyl Ether Oxidation on H3+nVnMo12-nPO40Keggin Structures. Journal of Physical Chemistry B, 2003, 107, 10840-10847.	1.2	142
68	Mechanistic Consequences of Composition in Acid Catalysis by Polyoxometalate Keggin Clusters. Journal of the American Chemical Society, 2008, 130, 10369-10379.	6.6	141
69	Consequences of Acid Strength for Isomerization and Elimination Catalysis on Solid Acids. Journal of the American Chemical Society, 2009, 131, 6554-6565.	6.6	138
70	Mechanistic Role of Water on the Rate and Selectivity of Fischer–Tropsch Synthesis on Ruthenium Catalysts. Angewandte Chemie - International Edition, 2013, 52, 12273-12278.	7.2	138
71	Bifunctional Condensation Reactions of Alcohols on Basic Oxides Modified by Copper and Potassium. Journal of Catalysis, 1998, 176, 155-172.	3.1	137
72	Mechanistic Aspects and Reaction Pathways for Oxidative Coupling of Methane on Mn/Na ₂ WO ₄ /SiO ₂ Catalysts. Journal of Physical Chemistry C, 2009, 113, 10131-10145.	1.5	134

#	Article	IF	CITATIONS
73	Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis. The Journal of Physical Chemistry, 1991, 95, 7795-7804.	2.9	133
74	Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5. Physical Chemistry Chemical Physics, 2002, 4, 4590-4601.	1.3	133
75	Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3â^`α thin films. Solid State Ionics, 2002, 148, 71-81.	1.3	132
76	Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane. Journal of Catalysis, 2004, 221, 491-499.	3.1	131
77	Synthesis, characterization, and catalytic properties of clean and oxygen-modified tungsten carbides. Catalysis Today, 1992, 15, 307-337.	2.2	130
78	Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica. Journal of Catalysis, 2006, 239, 200-211.	3.1	130
79	Characterization and comparison of pore landscapes in crystalline porous materials. Journal of Molecular Graphics and Modelling, 2013, 44, 208-219.	1.3	130
80	Solvation and acid strength effects on catalysis by faujasite zeolites. Journal of Catalysis, 2012, 286, 214-223.	3.1	127
81	Kinetic, Spectroscopic, and Theoretical Assessment of Associative and Dissociative Methanol Dehydration Routes in Zeolites. Angewandte Chemie - International Edition, 2014, 53, 12177-12181.	7.2	122
82	Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity. Journal of Catalysis, 2014, 311, 458-468.	3.1	120
83	Structural Characterization of Molybdenum Oxide Supported on Zirconia. Journal of Physical Chemistry B, 2000, 104, 10059-10068.	1.2	116
84	Effects of Temperature on the Raman Spectra and Dispersed Oxides. Journal of Physical Chemistry B, 2001, 105, 5144-5152.	1.2	115
85	Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischerâ [^] Tropsch Synthesis. Journal of Physical Chemistry B, 2002, 106, 85-91.	1.2	115
86	Implications of Transition State Confinement within Small Voids for Acid Catalysis. Journal of Physical Chemistry C, 2014, 118, 17787-17800.	1.5	115
87	Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. Journal of Physical Chemistry B, 2002, 106, 5421-5427.	1.2	114
88	Transition-State Enthalpy and Entropy Effects on Reactivity and Selectivity in Hydrogenolysis of <i>n</i> -Alkanes. Journal of the American Chemical Society, 2013, 135, 18586-18599.	6.6	113
89	Water-Assisted Tetragonal-to-Monoclinic Phase Transformation of ZrO2at Low Temperatures. Chemistry of Materials, 2000, 12, 2442-2447.	3.2	112
90	Entropy considerations in monomolecular cracking of alkanes on acidic zeolites. Journal of Catalysis, 2008, 253, 221-224.	3.1	112

#	Article	IF	CITATIONS
91	Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. Journal of Catalysis, 2012, 285, 92-102.	3.1	111
92	Correlating Acid Properties and Catalytic Function: A First-Principles Analysis of Alcohol Dehydration Pathways on Polyoxometalates. Journal of Physical Chemistry C, 2009, 113, 1872-1885.	1.5	110
93	Kinetically Relevant Steps and H ₂ /D ₂ Isotope Effects in Fischerâ^'Tropsch Synthesis on Fe and Co Catalysts. Journal of Physical Chemistry C, 2010, 114, 19761-19770.	1.5	110
94	Title is missing!. Catalysis Letters, 2002, 80, 77-86.	1.4	109
95	Catalytic Consequences of Composition in Polyoxometalate Clusters with Keggin Structure. Angewandte Chemie - International Edition, 2007, 46, 7864-7868.	7.2	108
96	Dynamics and Thermodynamics of Pd–PdO Phase Transitions: Effects of Pd Cluster Size and Kinetic Implications for Catalytic Methane Combustion. Journal of Physical Chemistry C, 2016, 120, 1446-1460.	1.5	107
97	Catalytic activation and reforming of methane on supported palladium clusters. Journal of Catalysis, 2010, 274, 52-63.	3.1	106
98	An Investigation of the Effects of Water on Rate and Selectivity for the Fischer–Tropsch Synthesis on Cobalt-Based Catalysts. Journal of Catalysis, 2002, 211, 422-433.	3.1	105
99	Structural and Mechanistic Requirements for Methane Activation and Chemical Conversion on Supported Iridium Clusters. Angewandte Chemie - International Edition, 2004, 43, 3685-3688.	7.2	105
100	Effects of Partial Confinement on the Specificity of Monomolecular Alkane Reactions for Acid Sites in Side Pockets of Mordenite. Angewandte Chemie - International Edition, 2010, 49, 808-811.	7.2	105
101	Mechanism and Site Requirements for Ethanol Oxidation on Vanadium Oxide Domains. Journal of Physical Chemistry C, 2009, 113, 2830-2836.	1.5	104
102	Effects of Void Environment and Acid Strength on Alkene Oligomerization Selectivity. ACS Catalysis, 2016, 6, 7059-7070.	5.5	104
103	Isomerization and Î ² -scission reactions of alkanes on bifunctional metal-acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity. Journal of Catalysis, 2018, 368, 389-410.	3.1	104
104	Catalytic reaction rates in thermodynamically non-ideal systems. Journal of Molecular Catalysis A, 2000, 163, 189-204.	4.8	103
105	Effects of Hydration and Dehydration on the Structure of Silica-Supported Vanadia Species. Langmuir, 2000, 16, 7162-7167.	1.6	101
106	Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites. Journal of Catalysis, 2016, 339, 195-208.	3.1	100
107	Kinetics and Mechanism of Steady-State Catalytic NO Decomposition Reactions on Cu–ZSM5. Journal of Catalysis, 2002, 209, 75-86.	3.1	99
108	Synthesis of higher alcohols on copper catalysts supported on alkali-promoted basic oxides. Applied Catalysis A: General, 1998, 169, 355-372.	2.2	98

#	Article	IF	CITATIONS
109	Alkali Effects on Molybdenum Oxide Catalysts for the Oxidative Dehydrogenation of Propane. Journal of Catalysis, 2000, 195, 244-252.	3.1	98
110	Structure and Properties of Cobalt-Exchanged H-ZSM5 Catalysts for Dehydrogenation and Dehydrocyclization of Alkanes. Journal of Physical Chemistry B, 2001, 105, 1176-1184.	1.2	98
111	Structural analysis of unpromoted Fe-based Fischer–Tropsch catalysts using X-ray absorption spectroscopy. Applied Catalysis A: General, 2001, 219, 215-222.	2.2	96
112	Rate and Selectivity Enhancements Mediated by OH Radicals in the Oxidative Coupling of Methane Catalyzed by Mn/Na ₂ WO ₄ /SiO ₂ . Angewandte Chemie - International Edition, 2008, 47, 7689-7693.	7.2	96
113	Grafted Metallocalixarenes as Single-Site Surface Organometallic Catalysts. Journal of the American Chemical Society, 2004, 126, 16478-16486.	6.6	95
114	Oxidation of CO in H2–CO mixtures catalyzed by platinum: alkali effects on rates and selectivity. Journal of Catalysis, 2005, 233, 242-255.	3.1	95
115	Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. Journal of Catalysis, 2017, 345, 183-206.	3.1	95
116	Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3and V2O5/Cr2O3/Al2O3:Â Structural Characterization and Catalytic Function. Journal of Physical Chemistry B, 2005, 109, 8987-9000.	1.2	94
117	Elementary Steps, the Role of Chemisorbed Oxygen, and the Effects of Cluster Size in Catalytic CH ₄ –O ₂ Reactions on Palladium. Journal of Physical Chemistry C, 2011, 115, 17845-17855.	1.5	93
118	Effective diffusivities in catalyst pellets: new model porous structures and transport simulation techniques. Journal of Catalysis, 1991, 129, 457-472.	3.1	92
119	Isotopic Studies of Methane Oxidation Pathways on PdO Catalysts. Journal of Catalysis, 1999, 188, 132-139.	3.1	92
120	Functional assessment of the strength of solid acid catalysts. Journal of Catalysis, 2009, 264, 54-66.	3.1	92
121	Design and optimization of catalysts and membrane reactors for the non-oxidative conversion of methane. Chemical Engineering Science, 2002, 57, 4595-4604.	1.9	88
122	Selective synthesis of ?-olefins on Fe-Zn Fischer-Tropsch catalysts. Topics in Catalysis, 1995, 2, 193-205.	1.3	87
123	Metal-Catalyzed C–C Bond Cleavage in Alkanes: Effects of Methyl Substitution on Transition-State Structures and Stability. Journal of the American Chemical Society, 2014, 136, 9664-9676.	6.6	87
124	Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts. Physical Chemistry Chemical Physics, 2004, 6, 3754.	1.3	85
125	Kinetics and mechanism of cyclohexane oxidation on MnAPO-5 catalystsâ~†. Journal of Catalysis, 2006, 239, 390-401.	3.1	85
126	Condensation and esterification reactions of alkanals, alkanones, and alkanols on TiO2: Elementary steps, site requirements, and synergistic effects of bifunctional strategies. Journal of Catalysis, 2016, 340, 302-320.	3.1	85

#	Article	IF	CITATIONS
127	Non-oxidative catalytic conversion of methane with continuous hydrogen removal. Studies in Surface Science and Catalysis, 1998, , 403-410.	1.5	84
128	Extent of Reduction of Vanadium Oxides during Catalytic Oxidation of Alkanes Measured by in-Situ UVâ^Visible Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 2345-2353.	1.2	84
129	Kinetic-transport models of bimodal reaction sequences—I. Homogeneous and heterogeneous pathways in oxidative coupling of methane. Chemical Engineering Science, 1993, 48, 2643-2661.	1.9	82
130	NO Oxidation Catalysis on Pt Clusters: Elementary Steps, Structural Requirements, and Synergistic Effects of NO ₂ Adsorption Sites. Journal of Physical Chemistry C, 2009, 113, 13331-13340.	1.5	82
131	Mechanistic details of acid-catalyzed reactions and their role in the selective synthesis of triptane and isobutane from dimethyl ether. Journal of Catalysis, 2011, 277, 173-195.	3.1	81
132	Selectivity of chemisorbed oxygen in C–H bond activation and CO oxidation and kinetic consequences for CH4–O2 catalysis on Pt and Rh clusters. Journal of Catalysis, 2011, 283, 10-24.	3.1	81
133	Reaction and Deactivation Pathways in Xylene Isomerization on Zirconia Modified by Tungsten Oxide. Journal of Catalysis, 2000, 194, 175-187.	3.1	80
134	Catalysis on solid acids: Mechanism and catalyst descriptors in oligomerization reactions of light alkenes. Journal of Catalysis, 2016, 344, 553-569.	3.1	80
135	Isobutanol and Methanol Synthesis on Copper Catalysts Supported on Modified Magnesium Oxide. Journal of Catalysis, 1997, 171, 130-147.	3.1	79
136	Vanadyltert-Butoxy Orthosilicate, OV[OSi(OtBu)3]3:Â A Model for Isolated Vanadyl Sites on Silica and a Precursor to Vanadiaâ^'Silica Xerogelsâ€. Chemistry of Materials, 1999, 11, 2966-2973.	3.2	79
137	Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts. Journal of Physical Chemistry B, 2001, 105, 646-653.	1.2	79
138	Hydrogen transfer and activation of propane and methane on ZSM5-based catalysts. Catalysis Letters, 1993, 21, 55-70.	1.4	75
139	Stability, structure, and oxidation state of Mo/H-ZSM-5 catalysts during reactions of CH4 and CH4–CO2 mixtures. Journal of Catalysis, 2005, 230, 173-185.	3.1	75
140	Reactivity and Selectivity Descriptors for the Activation of C–H Bonds in Hydrocarbons and Oxygenates on Metal Oxides. Journal of Physical Chemistry C, 2016, 120, 16741-16760.	1.5	75
141	Mechanism and site requirements for NO oxidation on Pd catalysts. Journal of Catalysis, 2010, 272, 74-81.	3.1	74
142	Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. Journal of Catalysis, 2017, 346, 134-153.	3.1	73
143	Catalytic epoxidation of propene with H2O–O ₂ reactants on Au/TiO ₂ . Chemical Communications, 2009, , 352-354.	2.2	71
144	Selective Catalytic Oxidation of Organosulfur Compounds withtert-Butyl Hydroperoxide. Chemistry - A European Journal, 2006, 12, 1960-1967.	1.7	69

#	Article	IF	CITATIONS
145	Adsorption, Desorption, and Conversion of Thiophene on H-ZSM5. Langmuir, 2004, 20, 10982-10991.	1.6	68
146	Thiophene hydrodesulfurization catalysis on supported Ru clusters: Mechanism and site requirements for hydrogenation and desulfurization pathways. Journal of Catalysis, 2010, 273, 245-256.	3.1	68
147	Matrix method for correction of mass spectra in deuterium-exchange applications. Industrial & Engineering Chemistry Research, 1989, 28, 839-844.	1.8	67
148	Non-oxidative reactions of propane on Zn/Na-ZSM5. Physical Chemistry Chemical Physics, 1999, 1, 5753-5759.	1.3	67
149	The Effects of CO2, CO and H2 Co-Reactants on Methane Reactions Catalyzed by Mo/H-ZSM-5. Catalysis Letters, 2002, 81, 271-279.	1.4	67
150	Structural and Functional Characterization of Redox Mn and Co Sites in AlPO Materials and Their Role in Alkane Oxidation Catalysis. Journal of Physical Chemistry B, 2004, 108, 5552-5563.	1.2	67
151	RuO2 Clusters within LTA Zeolite Cages: Consequences of Encapsulation on Catalytic Reactivity and Selectivity. Angewandte Chemie - International Edition, 2007, 46, 3697-3700.	7.2	67
152	Selective Homologation Routes to 2,2,3â€Trimethylbutane on Solid Acids. Angewandte Chemie - International Edition, 2009, 48, 3814-3816.	7.2	67
153	Stabilization of active, selective, and regenerable Ni-based dimerization catalysts by condensation of ethene withinordered mesopores. Journal of Catalysis, 2017, 352, 505-514.	3.1	67
154	Carbon–Carbon Bond Formation Pathways in CO Hydrogenation to Higher Alcohols. Journal of Catalysis, 1999, 188, 125-131.	3.1	66
155	Photoluminescence and Charge-Transfer Complexes of Calixarenes Grafted on TiO2 Nanoparticles. Chemistry of Materials, 2007, 19, 4998-5005.	3.2	65
156	Structural Assessment and Catalytic Consequences of the Oxygen Coordination Environment in Grafted Tiâ^ Calixarenes. Journal of the American Chemical Society, 2007, 129, 1122-1131.	6.6	65
157	Catalytic reactions of dioxygen with ethane and methane on platinum clusters: Mechanistic connections, site requirements, and consequences of chemisorbed oxygen. Journal of Catalysis, 2012, 285, 260-272.	3.1	64
158	Mechanistic interpretation of the effects of acid strength on alkane isomerization turnover rates and selectivity. Journal of Catalysis, 2014, 319, 283-296.	3.1	64
159	Catalytic hydrogenation of alkenes on acidic zeolites: Mechanistic connections to monomolecular alkane dehydrogenation reactions. Journal of Catalysis, 2011, 277, 36-45.	3.1	63
160	Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures. Physical Chemistry Chemical Physics, 2007, 9, 4902.	1.3	62
161	Selective Catalytic Oxidation of Ethanol to Acetic Acid on Dispersed Moâ€Vâ€Nb Mixed Oxides. Chemistry - A European Journal, 2007, 13, 9324-9330.	1.7	62
162	The Role of Outer-Sphere Surface Acidity in Alkene Epoxidation Catalyzed by Calixareneâ^'Ti(IV) Complexes. Journal of the American Chemical Society, 2007, 129, 15585-15595.	6.6	61

#	Article	IF	CITATIONS
163	Characterization of Fe, Fe-Cu, And Fe-Ag fischer-tropsch catalysts. Applied Catalysis, 1984, 12, 201-217.	1.1	59
164	Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids. Journal of Physical Chemistry B, 1997, 101, 614-622.	1.2	59
165	New insights into methanol synthesis catalysts from X-ray absorption spectroscopy. Catalysis Today, 1999, 53, 433-441.	2.2	59
166	Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains. Journal of Catalysis, 2003, 217, 222-222.	3.1	58
167	Catalytic dehydrogenation of alkanes on Pt/Na-[Fe]ZSM5 and staged O2 introduction for selective H2 removal. Journal of Catalysis, 2004, 222, 481-492.	3.1	58
168	Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates during catalytic homologation of C1 species. Journal of Catalysis, 2012, 285, 19-30.	3.1	57
169	Synthesis, Structural Characterization, and Catalytic Properties of Tungsten-Exchanged H-ZSM5. Journal of Physical Chemistry B, 2001, 105, 3928-3936.	1.2	56
170	Effects of zeolite structure and aluminum content on thiophene adsorption, desorption, and surface reactions. Applied Catalysis B: Environmental, 2005, 60, 223-232.	10.8	55
171	Catalytic oxidation of n-hexane on Mn-exchanged zeolites: Turnover rates, regioselectivity, and spatial constraints. Journal of Catalysis, 2007, 245, 316-325.	3.1	55
172	Theoretical and kinetic assessment of the mechanism of ethane hydrogenolysis on metal surfaces saturated with chemisorbed hydrogen. Journal of Catalysis, 2014, 311, 350-356.	3.1	55
173	Kinetic and Mechanistic Assessment of Alkanol/Alkanal Decarbonylation and Deoxygenation Pathways on Metal Catalysts. Journal of the American Chemical Society, 2015, 137, 11984-11995.	6.6	55
174	Synthesis of stable monodisperse AuPd, AuPt, and PdPt bimetallic clusters encapsulated within LTA-zeolites. Journal of Catalysis, 2016, 342, 125-137.	3.1	55
175	Preferential activation of CO near hydrocarbon chains during Fischer–Tropsch synthesis on Ru. Journal of Catalysis, 2016, 337, 91-101.	3.1	54
176	Dense CO Adlayers as Enablers of CO Hydrogenation Turnovers on Ru Surfaces. Journal of the American Chemical Society, 2017, 139, 11789-11802.	6.6	54
177	Monte carlo simulations of structural properties of packed beds. Chemical Engineering Science, 1991, 46, 1089-1099.	1.9	53
178	Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces. Accounts of Chemical Research, 2015, 48, 1254-1262.	7.6	53
179	Stability of bound species during alkene reactions on solid acids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3900-E3908.	3.3	52
180	Methanol synthesis over Cu/SiO2 catalysts. Catalysis Letters, 1991, 10, 1-10.	1.4	51

#	Article	IF	CITATIONS
181	Selective Oxidation of Dimethylether to Formaldehyde on Small Molybdenum Oxide Domains. Journal of Catalysis, 2002, 208, 1-5.	3.1	50
182	Monte-Carlo simulations of surface and gas phase diffusion in complex porous structures. Chemical Engineering Science, 2003, 58, 4605-4617.	1.9	49
183	Zirconia-Supported MoOx Catalysts for the Selective Oxidation of Dimethyl Ether to Formaldehyde: Structure, Redox Properties, and Reaction Pathways. Journal of Physical Chemistry B, 2003, 107, 4118-4127.	1.2	49
184	Structural Requirements and Reaction Pathways in Dimethyl Ether Combustion Catalyzed by Supported Pt Clusters. Journal of the American Chemical Society, 2007, 129, 13201-13212.	6.6	49
185	Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol. ACS Catalysis, 2015, 5, 666-682.	5.5	49
186	Effects of Chain Length on the Mechanism and Rates of Metal-Catalyzed Hydrogenolysis of <i>n</i> -Alkanes. Journal of Physical Chemistry C, 2016, 120, 8125-8138.	1.5	49
187	Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal — homogeneous–heterogeneous reaction pathways. Chemical Engineering Science, 2001, 56, 1869-1881.	1.9	48
188	Isothermal activation of Mo2O52+–ZSM-5 precursors during methane reactions: effects of reaction products on structural evolution and catalytic properties. Physical Chemistry Chemical Physics, 2005, 7, 538-547.	1.3	48
189	Site Titration with Organic Bases During Catalysis: Selectivity Modifier and Structural Probe in Methanol Oxidation on Keggin Clusters. Angewandte Chemie - International Edition, 2003, 42, 5072-5075.	7.2	47
190	Structure and function of oxide nanostructures: catalytic consequences of size and composition. Physical Chemistry Chemical Physics, 2008, 10, 5331.	1.3	47
191	Formation of C–C and C–O Bonds and Oxygen Removal in Reactions of Alkanediols, Alkanols, and Alkanals on Copper Catalysts. Journal of the American Chemical Society, 2011, 133, 20384-20398.	6.6	47
192	Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H-ZSM5. Journal of Physical Chemistry B, 2002, 106, 4714-4720.	1.2	45
193	Support and promoter effects in the selective oxidation of ethane to acetic acid catalyzed by Mo-V-Nb oxides. Applied Catalysis A: General, 2008, 334, 339-347.	2.2	44
194	Catalysis by Confinement: Enthalpic Stabilization of NO Oxidation Transition States by Micropororous and Mesoporous Siliceous Materials. Journal of Physical Chemistry C, 2013, 117, 20666-20674.	1.5	44
195	Substituent Effects and Molecular Descriptors of Reactivity in Condensation and Esterification Reactions of Oxygenates on Acid–Base Pairs at TiO ₂ and ZrO ₂ Surfaces. Journal of Physical Chemistry C, 2016, 120, 21589-21616.	1.5	44
196	Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids. Journal of the American Chemical Society, 2014, 136, 15229-15247.	6.6	43
197	Fischer-tropsch synthesis on cobalt catalysts: Structural requirements and reaction pathways. Studies in Surface Science and Catalysis, 1997, , 153-162.	1.5	42
198	Isotopic Tracer Studies of Propane Reactions on Hâ^'ZSM5 Zeolite. Journal of Physical Chemistry B, 1998, 102, 9284-9289.	1.2	42

#	Article	IF	CITATIONS
199	In situ UVâ^'Visible Spectroscopic Measurements of Kinetic Parameters and Active Sites for Catalytic Oxidation of Alkanes on Vanadium Oxidesâ€. Journal of Physical Chemistry B, 2005, 109, 2414-2420.	1.2	42
200	Reactant Selectivity and Regiospecificity in the Catalytic Oxidation of Alkanes on Metal-Substituted Aluminophosphates. Journal of Physical Chemistry C, 2007, 111, 1402-1411.	1.5	42
201	Toward More Complete Descriptors of Reactivity in Catalysis by Solid Acids. ACS Catalysis, 2016, 6, 5386-5392.	5.5	42
202	Kinetic and Theoretical Insights into the Mechanism of Alkanol Dehydration on Solid BrÃ,nsted Acid Catalysts. Journal of Physical Chemistry C, 2016, 120, 3371-3389.	1.5	42
203	Kinetic-transport models and the design of catalysts and reactors for the oxidative coupling of methane. Catalysis Letters, 1993, 19, 167-180.	1.4	41
204	Transient Studies of Oxygen Removal Pathways and Catalytic Redox Cycles during NO Decomposition on Cuâ^'ZSM5. Journal of Physical Chemistry B, 2002, 106, 9633-9641.	1.2	41
205	Structure and Catalytic Function of Re-Oxo Species Grafted onto H-MFI Zeolite by Sublimation of Re2O7. Journal of the American Chemical Society, 2006, 128, 15082-15083.	6.6	41
206	Role of Branching on the Rate and Mechanism of C–C Cleavage in Alkanes on Metal Surfaces. ACS Catalysis, 2016, 6, 469-482.	5.5	40
207	Selective Homogeneous and Heterogeneous Catalytic Conversion of Methanol/Dimethyl Ether to Triptane. Accounts of Chemical Research, 2012, 45, 653-662.	7.6	39
208	Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and Dissociative Routes and Hydrogen Addition Energies as Descriptors of Reactivity. Journal of Physical Chemistry C, 2014, 118, 26115-26129.	1.5	39
209	Simulations of the structure and properties of amorphous silica surfaces. Chemical Engineering Science, 2001, 56, 4205-4216.	1.9	38
210	Mechanistic Evidence for Sequential Displacement–Reduction Routes in the Synthesis of Pd–Au Clusters with Uniform Size and Clean Surfaces. Journal of Physical Chemistry C, 2014, 118, 7468-7479.	1.5	38
211	Catalytic Ring Opening of Cycloalkanes on Ir Clusters: Alkyl Substitution Effects on the Structure and Stability of C–C Bond Cleavage Transition States. Journal of Physical Chemistry C, 2015, 119, 2597-2613.	1.5	38
212	Structures and Properties of Zirconia-Supported Ruthenium Oxide Catalysts for the Selective Oxidation of Methanol to Methyl Formate. Journal of Physical Chemistry B, 2006, 110, 23337-23342.	1.2	37
213	Role of Câ [~] 'H Bond Strength in the Rate and Selectivity of Oxidative Dehydrogenation of Alkanes. Journal of Physical Chemistry C, 2009, 113, 12380-12386.	1.5	37
214	Desulfurization of Thiophene via Hydrogen Transfer from Alkanes on Cation-Modified H-ZSM5. Journal of Catalysis, 1999, 187, 257-261.	3.1	36
215	Title is missing!. Catalysis Letters, 2002, 82, 175-180.	1.4	36
216	Mechanism and Site Requirements of Thiophene Hydrodesulfurization Catalyzed by Supported Pt Clusters. ChemCatChem, 2011, 3, 1166-1175.	1.8	36

#	Article	IF	CITATIONS
217	Structure sensitivity via decoration of low-coordination exposed metal atoms: CO oxidation catalysis on Pt clusters. Journal of Catalysis, 2013, 301, 198-209.	3.1	36
218	Dioxygen activation routes in Mars-van Krevelen redox cycles catalyzed by metal oxides. Journal of Catalysis, 2018, 364, 228-247.	3.1	36
219	Homogeneous Oxidation Reactions of Propanediols at Low Temperatures. ChemSusChem, 2010, 3, 1063-1070.	3.6	35
220	Mechanistic assessments of NO oxidation turnover rates and active site densities on WO3-promoted CeO2 catalysts. Journal of Catalysis, 2016, 342, 84-97.	3.1	35
221	Selective conversion of acetone to isobutene and acetic acid on aluminosilicates: Kinetic coupling between acid-catalyzed and radical-mediated pathways. Journal of Catalysis, 2018, 360, 66-80.	3.1	35
222	Synthetic strategies for the encapsulation of nanoparticles of Ni, Co, and Fe oxides within crystalline microporous aluminosilicates. Microporous and Mesoporous Materials, 2018, 270, 10-23.	2.2	35
223	Mechanistic Connections between CO ₂ and CO Hydrogenation on Dispersed Ruthenium Nanoparticles. Journal of the American Chemical Society, 2021, 143, 11582-11594.	6.6	35
224	Consequences of Acid Strength and Diffusional Constraints for Alkane Isomerization and Î ² -Scission Turnover Rates and Selectivities on Bifunctional Metal-Acid Catalysts. Journal of Physical Chemistry C, 2018, 122, 25475-25497.	1.5	34
225	Mechanistic insights and consequences of intrapore liquids in ethene, propene, and butene dimerization on isolated Ni2+ sites grafted within aluminosilicate mesopores. Journal of Catalysis, 2020, 389, 690-705.	3.1	34
226	Tungsten carbides modified by chemisorbed oxygen. A new class of bifunctional catalysts. Catalysis Today, 1992, 15, 455-458.	2.2	33
227	Kinetic, infrared, and X-ray absorption studies of adsorption, desorption, and reactions of thiophene on H-ZSM5 and Co/H-ZSM5. Physical Chemistry Chemical Physics, 2002, 4, 1241-1251.	1.3	33
228	Active, selective, and stable Pt/Na-[Fe]ZSM5 catalyst for the dehydrogenation of light alkanes. Chemical Communications, 2003, , 1764.	2.2	33
229	Isolation of Rhenium and ReOx Species within ZSM5 Channels and their Catalytic Function in the Activation of Alkanes and Alkanols. Chemistry - A European Journal, 2007, 13, 3048-3057.	1.7	33
230	Experimental and Theoretical Evidence for the Reactivity of Bound Intermediates in Ketonization of Carboxylic Acids and Consequences of Acid–Base Properties of Oxide Catalysts. Journal of Physical Chemistry C, 2017, 121, 18030-18046.	1.5	33
231	Synthesis of highly dispersed cobalt oxide clusters encapsulated within LTA zeolites. Journal of Catalysis, 2017, 356, 173-185.	3.1	33
232	Dispersion, support, and bimetallic effects in Fischer-Tropsch synthesis on cobalt catalysts. Studies in Surface Science and Catalysis, 1994, , 433-442.	1.5	32
233	Energetics of Small Molecule and Water Complexation in Hydrophobic Calixarene Cavities. Langmuir, 2006, 22, 4004-4014.	1.6	32
234	NOx-Mediated Homogeneous Pathways for the Synthesis of Formaldehyde from CH4â^'O2Mixtures. Industrial & Engineering Chemistry Research, 2006, 45, 2677-2688.	1.8	32

#	Article	IF	CITATIONS
235	Catalytic NO activation and NOâ \in "H 2 reaction pathways. Journal of Catalysis, 2014, 319, 95-109.	3.1	31
236	Kinetic Relevance of Hydrogen Desorption Steps and Virtual Pressures on Catalytic Surfaces during Reactions of Light Alkanes. Journal of Physical Chemistry B, 2002, 106, 9642-9648.	1.2	30
237	Copper Deposition onto Silicon by Galvanic Displacement: Effect of Silicon Dissolution Rate. Journal of the Electrochemical Society, 2008, 155, E70.	1.3	30
238	Unimolecular and bimolecular formic acid decomposition on copper. The Journal of Physical Chemistry, 1986, 90, 5272-5274.	2.9	29
239	Readsorption and Adsorption-Assisted Desorption of CO2 on Basic Solids. Journal of Physical Chemistry B, 1998, 102, 961-966.	1.2	29
240	Kinetics and Mechanism of Dimethyl Ether Oxidation to Formaldehyde on Supported Molybdenum Oxide Domains. Journal of Physical Chemistry B, 2004, 108, 18650-18658.	1.2	29
241	Catalytic NO Oxidation Pathways and Redox Cycles on Dispersed Oxides of Rhodium and Cobalt. ChemCatChem, 2012, 4, 1397-1404.	1.8	28
242	Hydrogen Chemisorption Isotherms on Platinum Particles at Catalytic Temperatures: Langmuir and Two-Dimensional Gas Models Revisited. Journal of Physical Chemistry C, 2019, 123, 8447-8462.	1.5	28
243	The Dynamics of Oxygen Exchange with Zirconia-Supported PdO. Journal of Catalysis, 1999, 185, 213-218.	3.1	27
244	Acid strength and metal-acid proximity effects on methylcyclohexane ring contraction turnover rates and selectivities. Journal of Catalysis, 2016, 344, 817-830.	3.1	27
245	Effects of Charge, Size, and Shape of Transition States, Bound Intermediates, and Confining Voids in Reactions of Alkenes on Solid Acids. ChemCatChem, 2018, 10, 4028-4037.	1.8	27
246	Isomer sieving and the selective formation of terminal methyl isomers in reactions of linear alkanes on one-dimensional zeolites. Journal of Catalysis, 2019, 377, 255-270.	3.1	27
247	Reactivity descriptors in acid catalysis: acid strength, proton affinity and host–guest interactions. Chemical Communications, 2020, 56, 7371-7398.	2.2	27
248	Modeling and analysis of hydrogen permeation in mixed proton–electronic conductors. Chemical Engineering Science, 2003, 58, 1977-1988.	1.9	26
249	Synthesis, Structure, and Catalytic Reactivity of Isolated V5+-Oxo Species Prepared by Sublimation of VOCl3onto H-ZSM5. Journal of Physical Chemistry B, 2006, 110, 5462-5472.	1.2	26
250	Catalytic Coâ€Homologation of Alkanes and Dimethyl Ether and Promotion by Adamantane as a Hydride Transfer Co atalyst. ChemCatChem, 2011, 3, 704-718.	1.8	26
251	Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. Journal of Catalysis, 2020, 383, 60-76.	3.1	26
252	Mechanism of Isobutanal–Isobutene Prins Condensation Reactions on Solid BrÃ,nsted Acids. ACS Catalysis, 2016, 6, 7664-7684.	5.5	25

#	Article	IF	CITATIONS
253	Structure-sensitivity and ensemble effects in reactions of strongly adsorbed intermediates: catalytic dehydrogenation and dehydration of formic acid on nickel. The Journal of Physical Chemistry, 1991, 95, 7011-7016.	2.9	24
254	Title is missing!. Catalysis Letters, 1998, 51, 47-52.	1.4	23
255	Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu. Faraday Discussions, 2017, 197, 59-86.	1.6	23
256	Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis. Topics in Catalysis, 1995, 2, 17-27.	1.3	22
257	Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chemical Communications, 2008, , 594-596.	2.2	22
258	lsotopic and Kinetic Assessment of the Mechanism of CH ₃ OHâ^'H ₂ O Catalysis on Supported Copper Clusters. Journal of Physical Chemistry C, 2008, 112, 17235-17243.	1.5	22
259	NO _{<i>x</i>} Interactions with Dispersed BaO: Adsorption Kinetics, Chemisorbed Species, and Effects of Oxidation Catalyst Sites. Journal of Physical Chemistry C, 2011, 115, 6561-6570.	1.5	22
260	First-principles theoretical assessment of catalysis by confinement: NO–O2 reactions within voids of molecular dimensions in siliceous crystalline frameworks. Physical Chemistry Chemical Physics, 2018, 20, 15725-15735.	1.3	22
261	Synergistic Effects of TiO ₂ and Palladiumâ€Based Cocatalysts on the Selective Oxidation of Ethene to Acetic Acid on Mo–V–Nb Oxide Domains. Angewandte Chemie - International Edition, 2007, 46, 8649-8652.	7.2	21
262	In situ UV-visible assessment of extent of reduction during oxidation reactions on oxide catalysts. Chemical Communications, 2003, , 2082.	2.2	20
263	Catalytic dehydroisomerization of n-alkanes to isoalkenes. Journal of Catalysis, 2008, 255, 134-137.	3.1	20
264	Catalytic routes to fuels from C ₁ and oxygenate molecules. Faraday Discussions, 2017, 197, 9-39.	1.6	20
265	Catalytic diversity conferred by confinement of protons within porous aluminosilicates in Prins condensation reactions. Journal of Catalysis, 2017, 352, 415-435.	3.1	20
266	Effects of Al2O3 support modifications on MoOx and VOx catalysts for dimethyl ether oxidation to formaldehyde. Physical Chemistry Chemical Physics, 2003, 5, 3795.	1.3	19
267	Kinetics and Mechanism of Ethane Oxidation to Acetic Acid on Catalysts Based on Moâ^'Vâ^'Nb Oxides. Journal of Physical Chemistry C, 2008, 112, 15001-15008.	1.5	19
268	Entropy-Driven High Reactivity of Formaldehyde in Nucleophilic Attack by Enolates on Oxide Surfaces. Journal of the American Chemical Society, 2018, 140, 775-782.	6.6	19
269	Synthesis of Bimetallic AuPt Clusters with Clean Surfaces via Sequential Displacement-Reduction Processes. Chemistry of Materials, 2016, 28, 5872-5886.	3.2	18
270	Mechanism and site requirements for thiophene hydrodesulfurization on supported Re domains in metal or sulfide form. Journal of Catalysis, 2018, 368, 411-426.	3.1	17

#	Article	IF	CITATIONS
271	Catalytic desulfurization of thiophene on H-ZSM5 using alkanes as co-reactants. Applied Catalysis A: General, 2003, 242, 111-121.	2.2	16
272	Effects of O2Concentration on the Rate and Selectivity in Oxidative Dehydrogenation of Ethane Catalyzed by Vanadium Oxide:Â Implications for O2Staging and Membrane Reactors. Industrial & Engineering Chemistry Research, 2003, 42, 5462-5466.	1.8	16
273	Nature, Density, and Catalytic Role of Exposed Species on Dispersed VOx/CrOx/Al2O3Catalysts. Journal of Physical Chemistry B, 2006, 110, 2732-2739.	1.2	16
274	Non-Flory Product Distributions in Fischer-Tropsch Synthesis Catalyzed by Ruthenium, Cobalt, and Iron. ACS Symposium Series, 1993, , 383-396.	0.5	15
275	Synthetic Design of Cobalt Fischer-Tropsch Catalysts. Materials Research Society Symposia Proceedings, 1994, 368, 113.	0.1	14
276	Dynamics of Copper Deposition onto Silicon by Galvanic Displacement. Journal of the Electrochemical Society, 2008, 155, D244.	1.3	14
277	From rays to structures: Representation and selection of void structures in zeolites using stochastic methods. Microporous and Mesoporous Materials, 2013, 181, 208-216.	2.2	13
278	Formic Acid Dehydration Rates and Elementary Steps on Lewis Acid–Base Site Pairs at Anatase and Rutile TiO ₂ Surfaces. Journal of Physical Chemistry C, 2020, 124, 20161-20174.	1.5	13
279	Isotopic Tracer Studies of Thiophene Desulfurization Reactions Using Hydrogen from Alkanes on H-ZSM5 and Co/H-ZSM5. Journal of Catalysis, 2001, 203, 175-183.	3.1	12
280	Staged O2Introduction and Selective H2Combustion during Catalytic Reactions of Alkanes on Cation-Exchanged H-ZSM5. Industrial & amp; Engineering Chemistry Research, 2003, 42, 3680-3689.	1.8	12
281	Bifunctional pathways mediated by Pt clusters and Al2O3 in the catalytic combustion of dimethyl ether. Chemical Communications, 2007, , 2992.	2.2	12
282	Structure of Zirconium-Exchanged H-ZSM5 Prepared by Vapor Exchange of ZrCl4. Chemistry of Materials, 2007, 19, 1877-1882.	3.2	12
283	Synthesis, characterization, and function of Au nanoparticles within TS-1 zeotypes as catalysts for alkene epoxidation using O2/H2O reactants. Journal of Catalysis, 2022, 410, 206-220.	3.1	12
284	Silica-supported aminoxyls as reactive materials for NOxremoval. Journal of Materials Chemistry, 2011, 21, 982-990.	6.7	11
285	Displacement-reduction routes to PtPd clusters and mechanistic inferences for the synthesis of other bimetallic compositions. Journal of Catalysis, 2016, 344, 389-400.	3.1	11
286	Copper deposition onto silicon by galvanic displacement: Effect of Cu complex formation in NH4F solutions. Electrochimica Acta, 2009, 54, 3270-3277.	2.6	9
287	Reactivity and selectivity descriptors of dioxygen activation routes on metal oxides. Journal of Catalysis, 2019, 377, 692-710.	3.1	9
288	Hydrogenation and C S bond activation pathways in thiophene and tetrahydrothiophene reactions on sulfur-passivated surfaces of Ru, Pt, and Re nanoparticles. Applied Catalysis B: Environmental, 2021, 291, 119797.	10.8	9

#	Article	IF	CITATIONS
289	Chain Growth Reactions of Methanol on SAPO-34 and H-ZSM5. Studies in Surface Science and Catalysis, 1998, 119, 527-532.	1.5	8
290	Title is missing!. Journal of Materials Science, 2001, 36, 77-86.	1.7	8
291	Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane. Studies in Surface Science and Catalysis, 2001, 136, 507-512.	1.5	8
292	Catalytic Alkylation Routes via Carboniumâ€lonâ€Like Transition States on Acidic Zeolites. ChemCatChem, 2011, 3, 1134-1138.	1.8	8
293	Catalysis for Fuels: general discussion. Faraday Discussions, 2017, 197, 165-205.	1.6	8
294	Dynamics and Mechanism of Carbon Filament Formation during Methane Reforming on Supported Nickel Clusters. Journal of Physical Chemistry C, 2020, 124, 20143-20160.	1.5	8
295	Coupling alkane dehydrogenation with hydrogenation reactions on cation-exchanged zeolites. Studies in Surface Science and Catalysis, 2000, 130, 899-904.	1.5	7
296	Structure and surface properties of ZrO2-supported WO3 nanostructures. Studies in Surface Science and Catalysis, 2000, 130, 3225-3230.	1.5	7
297	Synthesis and Characterization of Proton-Conducting Oxides as Hydrogen Transport Membranes. Studies in Surface Science and Catalysis, 2001, 136, 357-362.	1.5	7
298	Fischer-Tropsch synthesis catalysts based on Fe oxide precursors modified by Cu and K: structure and site requirements. Studies in Surface Science and Catalysis, 2001, 136, 387-392.	1.5	7
299	Experimental and theoretical assessment of the mechanism of hydrogen transfer in alkane-alkene coupling on solid acids. Journal of Catalysis, 2017, 354, 287-298.	3.1	7
300	Parallel Alkane Dehydrogenation Routes on BrÃnsted Acid and Reaction-Derived Carbonaceous Active Sites in Zeolites. Journal of Physical Chemistry C, 2020, 124, 15839-15855.	1.5	7
301	The Fischer-Tropsch synthesis: A few enduring mechanistic conundrums revisited. Journal of Catalysis, 2022, 405, 614-625.	3.1	7
302	Isobutanol and Methanol Synthesis on Copper Supported on Alkali-Modified MgO and ZnO Supports. Studies in Surface Science and Catalysis, 1998, 119, 509-514.	1.5	6
303	The location, structure, and role of MoOx and MoCy species in Mo/H-ZSM5 catalysts for methane aromatization. Studies in Surface Science and Catalysis, 2000, 130, 3621-3626.	1.5	6
304	Unimolecular and bimolecular formic acid decomposition routes on dispersed Cu nanoparticles. Journal of Catalysis, 2021, 404, 814-831.	3.1	5
305	Reaction-Transport Selectivity Models and the Design of Fischer–Tropsch Catalysts. , 2020, , 199-258.		5
306	Deuterium Isotopic Tracer Studies of Thiophene Desulfurization Pathways Using Propane or Dihydrogen as Co-reactants. Journal of Catalysis, 2002, 207, 31-36.	3.1	4

#	ARTICLE	IF	CITATIONS
307	INHIBITED DEACTIVATION OF Pt SITES AND SELECTIVE DEHYDROCYCLIZATION OF N-HEPTANE WITHIN L-ZEOLITE CHANNELS. , 1993, , 421-431.		4
308	Consequences of Intrapore Liquids on Reactivity, Selectivity, and Stability for Aldol Condensation Reactions on Anatase TiO ₂ Catalysts. ChemCatChem, 2022, 14, .	1.8	4
309	Synthesis of eggshell cobalt catalysts by molten salt impregnation techniques. Studies in Surface Science and Catalysis, 1995, 91, 989-997.	1.5	3
310	Binding and Exchange Reactions of Hydrogen Isotopes on Surfaces of Dispersed Pt Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 3923-3938.	1.5	3
311	Use of CI-MS for the determination of deuterium content in hydrocarbons. 1. The boundary method for hydrogen-abstraction spectra. Industrial & Engineering Chemistry Research, 1989, 28, 1089-1095.	1.8	2
312	Monte Carlo Simulations of Effective Diffusivities in Three—Dimensional Pore Structures. Materials Research Society Symposia Proceedings, 1990, 195, 553.	0.1	2
313	Use of CI-MS for the determination of deuterium content in hydrocarbons. 2. Solutions for systems involving multiple ionization processes. Industrial & Engineering Chemistry Research, 1989, 28, 1688-1693.	1.8	1
314	Simulation techniques for the design and characterization of structural and transport properties of mesoporous materials. , 1993, , 1007-1012.		1
315	CONSEQUENCES OF CONFINEMENT FOR CATALYSIS WITHIN VOIDS OF MOLECULAR DIMENSIONS. , 2018, , .		1
316	Structural and reaction models for the design and optimization of catalytic sites, pellets, and reactors. , 1993, , 1053-1060.		0
317	Simulation Techniques for the Characterization of Structural and Transport Properties of Catalyst Pellets. , 2020, , 89-136.		0