
Walid Osamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iterative selection and correction based adaptive greedy algorithm for compressive sensing reconstruction. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 892-900.	3.9	3
2	Recent Studies Utilizing Artificial Intelligence Techniques for Solving Data Collection, Aggregation and Dissemination Challenges in Wireless Sensor Networks: A Review. Electronics (Switzerland), 2022, 11, 313.	3.1	27
3	Coverage, Deployment and Localization Challenges in Wireless Sensor Networks Based on Artificial Intelligence Techniques: A Review. IEEE Access, 2022, 10, 30232-30257.	4.2	29
4	SEEDGT: Secure and energy efficient data gathering technique for IoT applications based WSNs. Journal of Network and Computer Applications, 2022, 202, 103353.	9.1	10
5	EDCCS: effective deterministic clustering scheme based compressive sensing to enhance IoT based WSNs. Wireless Networks, 2022, 28, 2375-2391.	3.0	6
6	FACS: Fairness aware clustering scheme for monitoring applications of internet of things based wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 2022, , .	3.9	2
7	Iterative Selection and Correction Based Adaptive Greedy Algorithm for Compressive Sensing Reconstruction. Wireless Personal Communications, 2021, 116, 3277-3289.	2.7	4
8	A Secure Data Gathering Scheme Based on Properties of Primes and Compressive Sensing for IoT-Based WSNs. IEEE Sensors Journal, 2021, 21, 5553-5571.	4.7	16
9	Chainâ€routing scheme with compressive sensingâ€based data acquisition for Internet of Thingsâ€based wireless sensor networks. IET Networks, 2021, 10, 43-58.	1.8	8
10	Successors of PEGASIS protocol: A comprehensive survey. Computer Science Review, 2021, 39, 100368.	15.3	33
11	IPDCA: Intelligent Proficient Data Collection Approach for IoT-Enabled Wireless Sensor Networks in Smart Environments. Electronics (Switzerland), 2021, 10, 997.	3.1	14
12	Deterministic clustering based compressive sensing scheme for fog-supported heterogeneous wireless sensor networks. PeerJ Computer Science, 2021, 7, e463.	4.5	7
13	Compressive sensing based routing and data reconstruction scheme for IoT based WSNs. Journal of Intelligent and Fuzzy Systems, 2021, 41, 19-35.	1.4	3
14	A Study on the Statistical Properties of the Prime Numbers Using the Classical and Superstatistical Random Matrix Theories. Advances in Mathematical Physics, 2021, 2021, 1-17.	0.8	1
15	IDCT: Intelligent Data Collection Technique for IoT-Enabled Heterogeneous Wireless Sensor Networks in Smart Environments. IEEE Sensors Journal, 2021, 21, 21099-21112.	4.7	20
16	Compressive sensing based secure data aggregation scheme for IoT based WSN applications. PLoS ONE, 2021, 16, e0260634.	2.5	5
17	An information entropy based-clustering algorithm for heterogeneous wireless sensor networks. Wireless Networks, 2020, 26, 1869-1886.	3.0	51
18	Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks. Peer-to-Peer Networking and Applications, 2020, 13, 796-815.	3.9	39

WALID OSAMY

#	Article	IF	CITATIONS
19	Routing in Wireless Sensor Networks Using Optimization Techniques: A Survey. Wireless Personal Communications, 2020, 111, 2407-2434.	2.7	73
20	A Novel Association Rule-Based Data Mining Approach for Internet of Things Based Wireless Sensor Networks. IEEE Access, 2020, 8, 151574-151588.	4.2	9
21	An Efficient Compressive Sensing Routing Scheme for Internet of Things Based Wireless Sensor Networks. Wireless Personal Communications, 2020, 114, 1905-1925.	2.7	23
22	Adaptive and Dynamic Mechanism for Round Length Determination in Cluster Based Wireless Sensor Networks. Wireless Personal Communications, 2020, 114, 1155-1175.	2.7	7
23	Grey Wolf based compressive sensing scheme for data gathering in IoT based heterogeneous WSNs. Wireless Networks, 2020, 26, 3395-3418.	3.0	26
24	CSOCA: Chicken Swarm Optimization Based Clustering Algorithm for Wireless Sensor Networks. IEEE Access, 2020, 8, 60676-60688.	4.2	45
25	An information entropy based-clustering algorithm for heterogeneous wireless sensor networks. , 2020, 26, 1869.		1
26	ADSDA: Adaptive Distributed Service Discovery Algorithm for Internet of Things Based Mobile Wireless Sensor Networks. IEEE Sensors Journal, 2019, 19, 10869-10880.	4.7	19
27	SATC: A Simulated Annealing Based Tree Construction and Scheduling Algorithm for Minimizing Aggregation Time in Wireless Sensor Networks. Wireless Personal Communications, 2019, 108, 921-938.	2.7	36
28	Optimising compressive sensing matrix using Chicken Swarm Optimisation algorithm. IET Wireless Sensor Systems, 2019, 9, 306-312.	1.7	7
29	Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 2019, 126, 12-28.	9.1	60
30	Sensor network node scheduling for preserving coverage of wireless multimedia networks. IET Wireless Sensor Systems, 2019, 9, 295-305.	1.7	13
31	GWRA: grey wolf based reconstruction algorithm for compressive sensing signals. PeerJ Computer Science, 2019, 5, e217.	4.5	3
32	Distributed coverage hole detection and recovery scheme for heterogeneous wireless sensor networks. Computer Communications, 2018, 124, 61-75.	5.1	44
33	Cluster-Tree Routing Based Entropy Scheme for Data Gathering in Wireless Sensor Networks. IEEE Access, 2018, 6, 77372-77387.	4.2	58
34	Effective Scheduling Strategy in Wireless Multimedia Sensor Networks for Critical Surveillance Applications. Applied Mathematics and Information Sciences, 2018, 12, 101-111.	0.5	9
35	Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 2015, 21, 1379-1390.	3.0	29
36	IBLEACH: intra-balanced LEACH protocol for wireless sensor networks. Wireless Networks, 2014, 20, 1515-1525.	3.0	96

WALID OSAMY

#	Article	IF	CITATIONS
37	Sparse Signals Reconstruction via Adaptive Iterative Greedy Algorithm. International Journal of Computer Applications, 2014, 90, 5-11.	0.2	9
38	Minimum connected cover of a query region in heterogeneous wireless sensor networks. Information Sciences, 2013, 223, 153-163.	6.9	22
39	Mobility-assisted minimum connected cover in a wireless sensor network. Journal of Parallel and Distributed Computing, 2012, 72, 827-837.	4.1	26
40	Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing, 2011, 71, 1318-1326.	4.1	34
41	Minimum perimeter coverage of query regions in a heterogeneous wireless sensor network. Information Sciences, 2011, 181, 3130-3142.	6.9	25
42	Perimeter discovery in wireless sensor networks. Journal of Parallel and Distributed Computing, 2009, 69, 922-929.	4.1	29
43	A topology discovery algorithm for sensor network using smart antennas. Computer Communications, 2006, 29, 2261-2268.	5.1	20