James R Perkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9148158/publications.pdf

Version: 2024-02-01

68 2,414 25 46 papers citations h-index g-index

72 72 72 4375
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Transient Protein-Protein Interactions: Structural, Functional, and Network Properties. Structure, 2010, 18, 1233-1243.	1.6	467
2	ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data. BMC Genomics, 2012, 13, 296.	1.2	172
3	Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds. Journal of Neuroscience, 2010, 30, 10860-10871.	1.7	152
4	Gene3D: a domain-based resource for comparative genomics, functional annotation and protein network analysis. Nucleic Acids Research, 2012, 40, D465-D471.	6.5	98
5	CXCL5 Mediates UVB Irradiation–Induced Pain. Science Translational Medicine, 2011, 3, 90ra60.	5.8	97
6	Sensory, psychological, and metabolic dysfunction in HIV-associated peripheral neuropathy: A cross-sectional deep profiling study. Pain, 2014, 155, 1846-1860.	2.0	87
7	Regulatory variants: from detection to predicting impact. Briefings in Bioinformatics, 2019, 20, 1639-1654.	3.2	82
8	A Comparison of RNA-Seq and Exon Arrays for Whole Genome Transcription Profiling of the L5 Spinal Nerve Transection Model of Neuropathic Pain in the Rat. Molecular Pain, 2014, 10, 1744-8069-10-7.	1.0	75
9	Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination. Brain, 2013, 136, 2279-2297.	3.7	73
10	Selective immediate responders to amoxicillin and clavulanic acid tolerate penicillin derivative administration after confirming the diagnosis. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1013-1019.	2.7	65
11	PainNetworks: A web-based resource for the visualisation of pain-related genes in the context of their network associations. Pain, 2013, 154, 2586e1-2586e12.	2.0	50
12	Genome-Wide Transcriptional Profiling of Skin and Dorsal Root Ganglia after Ultraviolet-B-Induced Inflammation. PLoS ONE, 2014, 9, e93338.	1,1	46
13	Initial immunological changes as predictors for house dust mite immunotherapy response. Clinical and Experimental Allergy, 2015, 45, 1542-1553.	1.4	44
14	Pyrazolones metabolites are relevant for identifying selective anaphylaxis to metamizole. Scientific Reports, 2016, 6, 23845.	1.6	44
15	Systems biology approaches to finding novel pain mediators. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 11-35.	6.6	42
16	Review: High-performance computing to detect epistasis in genome scale data sets. Briefings in Bioinformatics, 2016, 17, 368-379.	3.2	39
17	Natural evolution in patients with nonsteroidal antiâ€inflammatory drugâ€induced urticaria/angioedema. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1346-1355.	2.7	39
18	Immunological Changes Induced in Peach Allergy Patients with Systemic Reactions by Pru p 3 Sublingual Immunotherapy. Molecular Nutrition and Food Research, 2018, 62, 1700669.	1.5	39

#	Article	IF	Citations
19	Allergic Reactions to Metamizole: Immediate and Delayed Responses. International Archives of Allergy and Immunology, 2016, 169, 223-230.	0.9	37
20	NSAIDs-hypersensitivity often induces a blended reaction pattern involving multiple organs. Scientific Reports, 2018, 8, 16710.	1.6	36
21	Biofilm formation displays intrinsic offensive and defensive features of Bacillus cereus. Npj Biofilms and Microbiomes, 2020, 6, 3.	2.9	34
22	Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Frontiers in Pharmacology, 2016, 7, 316.	1.6	32
23	InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research, 2012, 40, 4725-4725.	6.5	31
24	Chemokine Expression in Peripheral Tissues from the Monosodium Lodoacetate Model of Chronic Joint Pain. Molecular Pain, 2013, 9, 1744-8069-9-57.	1.0	31
25	Hypersensitivity Reactions to Non-Steroidal Anti-Inflammatory Drugs. Current Pharmaceutical Design, 2017, 22, 6784-6802.	0.9	30
26	LPS promotes Th2 dependent sensitisation leading to anaphylaxis in a Pru p 3 mouse model. Scientific Reports, 2017, 7, 40449.	1.6	28
27	High Prevalence of Lipid Transfer Protein Sensitization in Apple Allergic Patients with Systemic Symptoms. PLoS ONE, 2014, 9, e107304.	1.1	25
28	Unravelling adverse reactions to NSAIDs using systems biology. Trends in Pharmacological Sciences, 2015, 36, 172-180.	4.0	24
29	Eicosanoid mediator profiles in different phenotypes of nonsteroidal antiâ€inflammatory drugâ€induced urticaria. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1135-1144.	2.7	23
30	Glycosylated nanostructures in sublingual immunotherapy induce long-lasting tolerance in LTP allergy mouse model. Scientific Reports, 2019, 9, 4043.	1.6	23
31	Genetic variants in arachidonic acid pathway genes associated with NSAID-exacerbated respiratory disease. Pharmacogenomics, 2015, 16, 825-839.	0.6	22
32	Pru p 3â€Epitopeâ€based sublingual immunotherapy in a murine model for the treatment of peach allergy. Molecular Nutrition and Food Research, 2017, 61, 1700110.	1.5	22
33	Semirna: Searching for Plant miRNAs Using Target Sequences. OMICS A Journal of Integrative Biology, 2012, 16, 168-177.	1.0	17
34	Update on the Genetic Basis of Drug Hypersensitivity Reactions. Journal of Investigational Allergology and Clinical Immunology, 2017, 27, 336-345.	0.6	17
35	Asthma and Rhinitis Induced by Selective Immediate Reactions to Paracetamol and Non-steroidal Anti-inflammatory Drugs in Aspirin Tolerant Subjects. Frontiers in Pharmacology, 2016, 7, 215.	1.6	16
36	Influence of age on IgE response in peanutâ€allergic children and adolescents from the Mediterranean area. Pediatric Allergy and Immunology, 2015, 26, 497-502.	1.1	15

#	Article	IF	CITATIONS
37	Copy number variation in ALOX5 and PTGER1 is associated with NSAIDs-induced urticaria and/or angioedema. Pharmacogenetics and Genomics, 2016, 26, 280-287.	0.7	15
38	Pru p 3â€Glycodendropeptides Based on Mannoses Promote Changes in the Immunological Properties of Dendritic and Tâ€Cells from LTPâ€Allergic Patients. Molecular Nutrition and Food Research, 2019, 63, e1900553.	1.5	15
39	Cellular Tests for the Evaluation of Drug Hypersensitivity. Current Pharmaceutical Design, 2017, 22, 6773-6783.	0.9	15
40	Phenotype-genotype comorbidity analysis of patients with rare disorders provides insight into their pathological and molecular bases. PLoS Genetics, 2020, 16, e1009054.	1.5	14
41	Association study of genetic variants in PLA2G4A, PLCG1, LAT, SYK, and TNFRS11A genes in NSAIDs-induced urticaria and/or angioedema patients. Pharmacogenetics and Genomics, 2015, 25, 618-621.	0.7	12
42	Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharmacogenomics Journal, 2019, 19, 191-199.	0.9	12
43	Genetic basis of hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 285-293.	1.1	11
44	Dermatophagoides pteronyssinus immunotherapy changes the T-regulatory cell activity. Scientific Reports, 2017, 7, 11949.	1.6	11
45	Gene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using ExpHunterSuite. Scientific Reports, 2021, 11, 15062.	1.6	11
46	Characterisation of non-coding genetic variation in histamine receptors using AnNCR-SNP. Amino Acids, 2016, 48, 2433-2442.	1.2	10
47	Systems biology approaches to enhance our understanding of drug hypersensitivity reactions. Clinical and Experimental Allergy, 2014, 44, 1461-1472.	1.4	8
48	Revealing the Relationship Between Human Genome Regions and Pathological Phenotypes Through Network Analysis. Lecture Notes in Computer Science, 2017, , 197-207.	1.0	8
49	Systematic identification of genetic systems associated with phenotypes in patients with rare genomic copy number variations. Human Genetics, 2021, 140, 457-475.	1.8	8
50	Assigning protein function from domain-function associations using DomFun. BMC Bioinformatics, 2022, 23, 43.	1.2	8
51	Genetic Variants of Thymic Stromal Lymphopoietin in Nonsteroidal Anti-Inflammatory Drug-Induced Urticaria/Angioedema. International Archives of Allergy and Immunology, 2016, 169, 249-255.	0.9	7
52	Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal Anti-Inflammatory Drug–Induced Acute Urticaria/Angioedema. Frontiers in Pharmacology, 2021, 12, 667824.	1.6	7
53	The study of severe cutaneous drug hypersensitivity reactions from a systems biology perspective. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 301-306.	1.1	6
54	Epistatic Analysis of Clarkson Disease. Procedia Computer Science, 2015, 51, 725-734.	1.2	6

#	Article	IF	CITATIONS
55	Missense Gamma-Aminobutyric Acid Receptor Polymorphisms Are Associated with Reaction Time, Motor Time, and Ethanol Effects in Vivo. Frontiers in Cellular Neuroscience, 2018, 12, 10.	1.8	6
56	Tests for evaluating non-immediate allergic drug reactions. Expert Review of Clinical Immunology, 2014, 10, 1475-1486.	1.3	5
57	Multiple Nonsteroidal Anti-Inflammatory Drug-Induced Cutaneous Disease: Relevance, Natural Evolution and Relationship with Atopy. International Archives of Allergy and Immunology, 2014, 164, 147-148.	0.9	5
58	The Genetics of Drug Hypersensitivity Reactions. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 222-232.	0.6	5
59	An improved de novo assembling and polishing of Solea senegalensis transcriptome shed light on retinoic acid signalling in larvae. Scientific Reports, 2020, 10, 20654.	1.6	5
60	Drug-Induced Anaphylaxis. Current Treatment Options in Allergy, 2015, 2, 169-182.	0.9	4
61	Transcriptional Profiling of Dendritic Cells in a Mouse Model of Foodâ€Antigenâ€Induced Anaphylaxis Reveals the Upregulation of Multiple Immuneâ€Related Pathways. Molecular Nutrition and Food Research, 2019, 63, e1800759.	1.5	4
62	Anaphylaxis to 2 NSAIDs in a Patient Who Tolerated ASA. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 266-268.	0.6	4
63	Transcriptional changes in dendritic cells underlying allergen specific induced tolerance in a mouse model. Scientific Reports, 2022, 12, 2797.	1.6	4
64	Analyzing the Effects of Genetic Variation in Noncoding Genomic Regions., 2018,, 119-144.		3
65	Decoding Neuromuscular Disorders Using Phenotypic Clusters Obtained From Co-Occurrence Networks. Frontiers in Molecular Biosciences, 2021, 8, 635074.	1.6	3
66	Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzer. Journal of Personalized Medicine, 2021, 11, 730.	1.1	2
67	Comprehensive Analysis of Patients with Undiagnosed Genetic Diseases Using the Patient Exploration Tools Suite (PETS). Lecture Notes in Computer Science, 2020, , 775-786.	1.0	1
68	Weighted Epistatic Analysis of NSAIDs Hypersensitivity Data. Engineering Applications of Artificial Intelligence, 2017, 62, 312-319.	4.3	0