Marta Andres-Mach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9148068/publications.pdf

Version: 2024-02-01

59 papers

1,369 citations

279487 23 h-index 35 g-index

62 all docs 62 docs citations

62 times ranked 1477 citing authors

#	Article	IF	CITATIONS
1	Xanthotoxin enhances the anticonvulsant potency of levetiracetam and valproate in the 6â€Hz corneal stimulation model in mice. Fundamental and Clinical Pharmacology, 2022, 36, 133-142.	1.0	6
2	Influence of Umbelliferone on the Anticonvulsant and Neuroprotective Activity of Selected Antiepileptic Drugs: An In Vivo and In Vitro Study. International Journal of Molecular Sciences, 2022, 23, 3492.	1.8	7
3	Spectroscopic Evaluation of the Potential Neurotoxic Effects of a New Candidate for Anti-Seizure Medication—TP-315 during Chronic Administration (In Vivo). International Journal of Molecular Sciences, 2022, 23, 4607.	1.8	O
4	Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats. International Journal of Molecular Sciences, 2022, 23, 5173.	1.8	7
5	New Phenylglycinamide Derivatives with Hybrid Structure as Candidates for New Broad-Spectrum Anticonvulsants. Cells, 2022, 11, 1862.	1.8	1
6	Selected flavonoids and their role in the treatment of epilepsy – a review of the latest reports from experimental studies. Acta Neurobiologiae Experimentalis, 2021, 81, 95-104.	0.4	2
7	Effect of Chronic Administration of 5-(3-chlorophenyl)-4-Hexyl-2,4 -Dihydro-3H-1,2,4-Triazole-3-Thione (TP-315)—A New Anticonvulsant Drug Candidate—On Living Organisms. International Journal of Molecular Sciences, 2021, 22, 3358.	1.8	5
8	Preclinical Assessment of a New Hybrid Compound C11 Efficacy on Neurogenesis and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. International Journal of Molecular Sciences, 2021, 22, 3240.	1.8	9
9	C-11, a New Antiepileptic Drug Candidate: Evaluation of the Physicochemical Properties and Impact on the Protective Action of Selected Antiepileptic Drugs in the Mouse Maximal Electroshock-Induced Seizure Model. Molecules, 2021, 26, 3144.	1.7	3
10	Effect of Lacosamide and Ethosuximide Chronic Treatment on Neural Precursor Cells and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. Brain Sciences, 2021, 11, 1014.	1.1	3
11	Saturation transfer MRI is sensitive to neurochemical changes in the rat brain due to chronic unpredictable mild stress. Scientific Reports, 2021, 11, 19040.	1.6	O
12	N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with Hybrid Structure as a Candidate for a Broad-Spectrum Antiepileptic Drug. Neurotherapeutics, 2020, 17, 309-328.	2.1	17
13	Evaluation of the impact of compound C11 a new anticonvulsant candidate on cognitive functions and hippocampal neurogenesis in mouse brain. Neuropharmacology, 2020, 163, 107849.	2.0	14
14	Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorganic Chemistry, 2020, 94, 103355.	2.0	28
15	Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutrition Research, 2020, 82, 44-57.	1.3	27
16	Levetiracetam combined with ACEA, highly selective cannabinoid CB1 receptor agonist changes neurogenesis in mouse brain. Neuroscience Letters, 2019, 696, 79-86.	1.0	9
17	Coumarins as potential supportive medication for the treatment of epilepsy. Acta Neurobiologiae Experimentalis, 2019, 79, 126-132.	0.4	12
18	Topinambur $\hat{a}\in$ " new possibilities for use in a supplementation diet. Annals of Agricultural and Environmental Medicine, 2019, 26, 24-28.	0.5	15

#	Article	IF	Citations
19	Coumarins as potential supportive medication for the treatment of epilepsy. Acta Neurobiologiae Experimentalis, 2019, 79, 126-132.	0.4	4
20	Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacological Reports, 2018, 70, 284-293.	1.5	41
21	Multifunctional Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)-3-methoxypropanamides with Anticonvulsant and Antinociceptive Properties. Journal of Medicinal Chemistry, 2017, 60, 8565-8579.	2.9	28
22	Effects of arachidonyl-2'-chloroethylamide (ACEA) on the protective action of various antiepileptic drugs in the 6-Hz corneal stimulation model in mice. PLoS ONE, 2017, 12, e0183873.	1.1	10
23	A Long-Term Treatment with Arachidonyl-2′-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy. International Journal of Molecular Sciences, 2017, 18, 900.	1.8	22
24	Increased neurogenesis after ACEA and levetiracetam treatment in mouse pilocarpine model of epilepsy. Journal of Pre-Clinical and Clinical Research, 2017, 11, 136-141.	0.2	3
25	Influence of caffeine on the protective activity of gabapentin and topiramate in a mouse model of generalized tonic-clonic seizures. Pharmacological Reports, 2016, 68, 680-685.	1.5	17
26	Influence of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of various novel antiepileptic drugs against maximal electroshock-induced seizures in mice. Fìtoterapìâ, 2016, 115, 86-91.	1.1	24
27	Synthesis and biological investigation of new equatorial (\hat{l}^2) stereoisomers of 3-aminotropane arylamides with atypical antipsychotic profile. Bioorganic and Medicinal Chemistry, 2016, 24, 3994-4007.	1.4	8
28	New hybrid molecules with anticonvulsant and antinociceptive activity derived from 3-methyl- or 3,3-dimethyl-1-[1-oxo-1-(4-phenylpiperazin-1-yl)propan-2-yl]pyrrolidine-2,5-diones. Bioorganic and Medicinal Chemistry, 2016, 24, 606-618.	1.4	22
29	Design, Synthesis, and Anticonvulsant Activity of New Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)propanamides and 2-(2,5-Dioxopyrrolidin-1-yl)butanamides. Journal of Medicinal Chemistry, 2015, 58, 5274-5286.	2.9	45
30	Seizure susceptibility to electroconvulsions or pentylenetetrazol after complete cerebral ischemia in rats due to cardiac arrest. Pharmacological Reports, 2015, 67, 417-420.	1.5	2
31	Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6Hz-induced psychomotor seizures in mice. Pharmacology Biochemistry and Behavior, 2015, 130, 53-58.	1.3	20
32	Modafinil and its metabolites enhance the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Psychopharmacology, 2015, 232, 2463-2479.	1.5	15
33	ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs. Brain Research, 2015, 1624, 86-94.	1.1	26
34	Assessment of the Combined Treatment with Umbelliferone and Four Classical Antiepileptic Drugs Against Maximal Electroshock-Induced Seizures in Mice. Pharmacology, 2015, 96, 175-180.	0.9	22
35	Additive Interactions between 1-Methyl-1,2,3,4-Tetrahydroisoquinoline and Clobazam in the Mouse Maximal Electroshock-Induced Tonic Seizure Model - An Isobolographic Analysis for Parallel Dose-Response Relationship Curves. Pharmacology, 2014, 93, 172-177.	0.9	6
36	Future prospects for cannabinoids and endogenous cannabinoid system in the epileptic brain - A short overview of the latest scientific reports. Drugs of the Future, 2014, 39, 857.	0.0	2

#	Article	IF	CITATIONS
37	Effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline on the protective action of various antiepileptic drugs in the maximal electroshock-induced seizure model: a type II isobolographic analysis. Journal of Neural Transmission, 2013, 120, 1651-1663.	1.4	3
38	Ivabradine (a hyperpolarization activated cyclic nucleotide-gated channel blocker) elevates the threshold for maximal electroshock-induced tonic seizures in mice. Pharmacological Reports, 2013, 65, 1407-1414.	1.5	25
39	Effect of ACEA—a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39, 301-309.	2.5	32
40	Neurogenesis in the epileptic brain: a brief overview from temporal lobe epilepsy. Pharmacological Reports, 2011, 63, 1316-1323.	1.5	25
41	Effects of WIN 55,212-2 mesylate (a synthetic cannabinoid) on the protective action of clonazepam, ethosuximide, phenobarbital and valproate against pentylenetetrazole-induced clonic seizures in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1870-1876.	2.5	29
42	Synthesis and biological investigation of potential atypical antipsychotics with a tropane core. Part 1. European Journal of Medicinal Chemistry, 2011, 46, 4474-4488.	2.6	12
43	Effects of three N-(carboxyanilinomethyl) derivatives of p-isopropoxyphenylsuccinimide on the anticonvulsant action of carbamazepine, phenobarbital, phenytoin and valproate in the mouse maximal electroshock-induced seizure model. European Journal of Pharmacology, 2010, 648, 74-79.	1.7	11
44	Anticonvulsant effects of four linear furanocoumarins, bergapten, imperatorin, oxypeucedanin, and xanthotoxin, in the mouse maximal electroshock-induced seizure model: a comparative study. Pharmacological Reports, 2010, 62, 1231-1236.	1.5	64
45	Effect of arachidonyl-2′-chloroethylamide, a selective cannabinoid CB1 receptor agonist, on the protective action of the various antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 18-25.	2.5	30
46	Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radical Biology and Medicine, 2009, 47, 1459-1467.	1.3	58
47	Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: An isobolographic analysis. European Journal of Pharmacology, 2009, 605, 87-94.	1.7	29
48	Osthole suppresses seizures in the mouse maximal electroshock seizure model. European Journal of Pharmacology, 2009, 607, 107-109.	1.7	74
49	Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: A comparative study. Epilepsy Research, 2009, 85, 293-299.	0.8	112
50	Isobolographic characterization of the anticonvulsant interaction profiles of levetiracetam in combination with clonazepam, ethosuximide, phenobarbital and valproate in the mouse pentylenetetrazole-induced seizure model. Seizure: the Journal of the British Epilepsy Association, 2009, 18, 607-614.	0.9	24
51	Indapamide enhances the protective action of carbamazepine, phenobarbital, and valproate against maximal electroshock-induced seizures in mice. Advances in Medical Sciences, 2009, 54, 66-74.	0.9	4
52	Radiation effects on neural precursor cells in the dentate gyrus. Cell and Tissue Research, 2008, 331, 251-262.	1.5	63
53	Cranial Irradiation Alters the Behaviorally Induced Immediate-Early Gene <i>Arc</i> (Activity-Regulated Cytoskeleton-Associated Protein). Cancer Research, 2008, 68, 9763-9770.	0.4	73
54	Radiation effects on neurogenic regions in the mammalian forebrain. Future Neurology, 2007, 2, 647-659.	0.9	0

#	Article	IF	CITATION
55	Levetiracetam and Felbamate Interact Both Pharmacodynamically and Pharmacokinetically: An Isobolographic Analysis in the Mouse Maximal Electroshock Model. Epilepsia, 2007, 48, 806-815.	2.6	26
56	Pharmacodynamic and Pharmacokinetic Characterization of Interactions between Levetiracetam and Numerous Antiepileptic Drugs in the Mouse Maximal Electroshock Seizure Model: An Isobolographic Analysis. Epilepsia, 2006, 47, 10-20.	2.6	57
57	Synergistic interaction of gabapentin and oxcarbazepine in the mouse maximal electroshock seizure model—an isobolographic analysis. European Journal of Pharmacology, 2005, 515, 54-61.	1.7	19
58	Pharmacological and Behavioral Characteristics of Interactions between Vigabatrin and Conventional Antiepileptic Drugs in Pentylenetetrazole-Induced Seizures in Mice: An Isobolographic Analysis. Neuropsychopharmacology, 2005, 30, 958-973.	2.8	80
59	Levetiracetam selectively potentiates the acute neurotoxic effects of topiramate and carbamazepine in the rotarod test in mice. European Neuropsychopharmacology, 2005, 15, 609-616.	0.3	37