Gye Won Han

List of Publications by Citations

Source: https://exaly.com/author-pdf/9148019/gye-won-han-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

118 14,328 119 52 h-index g-index citations papers 16,338 5.76 120 19 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
118	Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. <i>Science</i> , 2010 , 330, 1091-5	33.3	938
117	Structural basis for allosteric regulation of GPCRs by sodium ions. <i>Science</i> , 2012 , 337, 232-6	33.3	714
116	Structure of an agonist-bound human A2A adenosine receptor. <i>Science</i> , 2011 , 332, 322-7	33.3	706
115	Structure of the human Eppioid receptor in complex with JDTic. <i>Nature</i> , 2012 , 485, 327-32	50.4	695
114	Structure of the human histamine H1 receptor complex with doxepin. <i>Nature</i> , 2011 , 475, 65-70	50.4	630
113	Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. <i>Nature</i> , 2015 , 523, 561-7	50.4	572
112	Crystal structure of a lipid G protein-coupled receptor. <i>Science</i> , 2012 , 335, 851-5	33.3	538
111	Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. <i>Science</i> , 2013 , 341, 1387-90	33.3	505
110	Structural features for functional selectivity at serotonin receptors. <i>Science</i> , 2013 , 340, 615-9	33.3	492
109	Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. <i>Nature Communications</i> , 2014 , 5, 3309	17.4	416
108	Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. <i>Science</i> , 2014 , 344, 58-64	33.3	406
107	Structure of the human smoothened receptor bound to an antitumour agent. <i>Nature</i> , 2013 , 497, 338-43	3 50.4	375
106	Structural basis for molecular recognition at serotonin receptors. <i>Science</i> , 2013 , 340, 610-4	33.3	370
105	Serial femtosecond crystallography of G protein-coupled receptors. <i>Science</i> , 2013 , 342, 1521-4	33.3	367
104	Crystal Structure of the Human Cannabinoid Receptor CB. <i>Cell</i> , 2016 , 167, 750-762.e14	56.2	323
103	Structure of the human glucagon class B G-protein-coupled receptor. <i>Nature</i> , 2013 , 499, 444-9	50.4	312
102	Structure of the human P2Y12 receptor in complex with an antithrombotic drug. <i>Nature</i> , 2014 , 509, 115	5 -8 0.4	272

101	Crystal structures of agonist-bound human cannabinoid receptor CB. <i>Nature</i> , 2017 , 547, 468-471	50.4	270
100	Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. <i>Science</i> , 2015 , 347, 1117-22	33.3	262
99	Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. <i>Cell</i> , 2015 , 161, 833-44	56.2	262
98	Two disparate ligand-binding sites in the human P2Y1 receptor. <i>Nature</i> , 2015 , 520, 317-21	50.4	239
97	Agonist-bound structure of the human P2Y12 receptor. <i>Nature</i> , 2014 , 509, 119-22	50.4	222
96	Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. <i>Cell</i> , 2018 , 172, 55-67	. e 5652	205
95	Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. <i>Nature Communications</i> , 2014 , 5, 4355	17.4	175
94	Crystal Structure of the Human Cannabinoid Receptor CB2. <i>Cell</i> , 2019 , 176, 459-467.e13	56.2	175
93	Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. <i>Nature</i> , 2016 , 540, 458-461	50.4	168
92	Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. <i>Journal of Molecular Biology</i> , 2001 , 308, 263-78	6.5	145
91	Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. <i>Nature</i> , 2017 , 546, 312-315	50.4	143
90	Structure of the full-length glucagon class B G-protein-coupled receptor. <i>Nature</i> , 2017 , 546, 259-264	50.4	141
89	Structural basis for bifunctional peptide recognition at human Eppioid receptor. <i>Nature Structural and Molecular Biology</i> , 2015 , 22, 265-8	17.6	133
88	Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1. <i>Cell</i> , 2015 , 161, 1633-	4 3 6.2	129
87	Structural basis for selectivity and diversity in angiotensin II receptors. <i>Nature</i> , 2017 , 544, 327-332	50.4	128
86	5-HT Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. <i>Cell</i> , 2018 , 172, 719-7	3566e14	123
85	Allosteric Coupling of Drug Binding and Intracellular Signaling in the A Adenosine Receptor. <i>Cell</i> , 2018 , 172, 68-80.e12	56.2	119
84	Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. <i>Journal of Biological Chemistry</i> , 2015 , 290, 29127-39	5.4	111

83	Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. <i>Immunity</i> , 2017 , 46, 1005-1017.e5	32.3	106
82	Structural basis of ligand recognition at the human MT melatonin receptor. <i>Nature</i> , 2019 , 569, 284-288	50.4	98
81	The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. <i>Structure</i> , 2013 , 21, 2175-85	5.2	98
80	Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. <i>Structure</i> , 1997 , 5, 1033-46	5.2	98
79	Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. <i>Science Advances</i> , 2016 , 2, e1600292	14.3	85
78	Crystal structure of a voltage-gated K+ channel pore module in a closed state in lipid membranes <i>Journal of Biological Chemistry</i> , 2013 , 288, 3476	5.4	78
77	XFEL structures of the human MT melatonin receptor reveal the basis of subtype selectivity. <i>Nature</i> , 2019 , 569, 289-292	50.4	77
76	Structural Connection between Activation Microswitch and Allosteric Sodium Site in GPCR Signaling. <i>Structure</i> , 2018 , 26, 259-269.e5	5.2	77
75	Structural Basis for Apelin Control of the Human Apelin Receptor. <i>Structure</i> , 2017 , 25, 858-866.e4	5.2	74
74	Structural and biophysical characterization of the EphB4*ephrinB2 protein-protein interaction and receptor specificity. <i>Journal of Biological Chemistry</i> , 2006 , 281, 28185-92	5.4	71
73	Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 69, 223-33	4.2	68
7 ²	Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. <i>Nature Communications</i> , 2017 , 8, 15383	17.4	62
71	Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 69, 234-43	4.2	61
70	Structural basis of murein peptide specificity of a gamma-D-glutamyl-l-diamino acid endopeptidase. <i>Structure</i> , 2009 , 17, 303-13	5.2	57
69	Exploring the potential impact of an expanded genetic code on protein function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6961-6	11.5	56
68	Structure-based chemical modification strategy for enzyme replacement treatment of phenylketonuria. <i>Molecular Genetics and Metabolism</i> , 2005 , 86, 134-40	3.7	54
67	The Importance of Ligand-Receptor Conformational Pairs in Stabilization: Spotlight on the N/OFQ G Protein-Coupled Receptor. <i>Structure</i> , 2015 , 23, 2291-2299	5.2	53
66	Crystal structure of the Frizzled 4 receptor in a ligand-free state. <i>Nature</i> , 2018 , 560, 666-670	50.4	51

65	Structural basis of the activation of a metabotropic GABA receptor. <i>Nature</i> , 2020 , 584, 298-303	50.4	49
64	Structure of a DNA analog of the primer for HIV-1 RT second strand synthesis. <i>Journal of Molecular Biology</i> , 1997 , 269, 811-26	6.5	48
63	Determination of the melanocortin-4 receptor structure identifies Ca as a cofactor for ligand binding. <i>Science</i> , 2020 , 368, 428-433	33.3	46
62	Metal ions and phosphate binding in the H-N-H motif: crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions. <i>Protein Science</i> , 2002 , 11, 2947-57	6.3	45
61	Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 A resolution reveals a new fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 61, 449-53	4.2	45
60	Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8223-8228	11.5	43
59	Full-length human GLP-1 receptor structure without orthosteric ligands. <i>Nature Communications</i> , 2020 , 11, 1272	17.4	42
58	Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. <i>Science Advances</i> , 2019 , 5, eaax2518	14.3	41
57	X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. <i>Scientific Data</i> , 2016 , 3, 160021	8.2	40
56	An unusual sugar conformation in the structure of an RNA/DNA decamer of the polypurine tract may affect recognition by RNase H. <i>Journal of Molecular Biology</i> , 2003 , 334, 653-65	6.5	40
55	Elucidating the active Eppioid receptor crystal structure with peptide and small-molecule agonists. <i>Science Advances</i> , 2019 , 5, eaax9115	14.3	38
54	Crystal structure of the first eubacterial Mre11 nuclease reveals novel features that may discriminate substrates during DNA repair. <i>Journal of Molecular Biology</i> , 2010 , 397, 647-63	6.5	37
53	Structural basis for signal recognition and transduction by platelet-activating-factor receptor. <i>Nature Structural and Molecular Biology</i> , 2018 , 25, 488-495	17.6	37
52	Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. <i>Proteins: Structure, Function and Bioinformatics</i> , 2012 , 80, 1545-59	4.2	36
51	Structural basis of ligand binding modes at the human formyl peptide receptor 2. <i>Nature Communications</i> , 2020 , 11, 1208	17.4	34
50	Crystal structure of soluble MD-1 and its interaction with lipid IVa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 10990-5	11.5	34
49	Transition states. Trapping a transition state in a computationally designed protein bottle. <i>Science</i> , 2015 , 347, 863-867	33.3	31
48	Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nature Communications, 2019, 10, 5573	17.4	31

47	The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. <i>Structure</i> , 2005 , 13, 1385-96	5.2	30
46	Toward G protein-coupled receptor structure-based drug design using X-ray lasers. <i>IUCrJ</i> , 2019 , 6, 1106	-141 / 19	28
45	Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain. <i>Journal of Molecular Biology</i> , 2010 , 396, 31-46	6.5	25
44	Crystal structure of acireductone dioxygenase (ARD) from Mus musculus at 2.06 angstrom resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 808-13	4.2	25
43	Crystal structure of misoprostol bound to the labor inducer prostaglandin E receptor. <i>Nature Chemical Biology</i> , 2019 , 15, 11-17	11.7	23
42	Crystal structure of a voltage-gated K+ channel pore module in a closed state in lipid membranes. Journal of Biological Chemistry, 2012 , 287, 43063-70	5.4	19
41	Crystal structure of the Fic (Filamentation induced by cAMP) family protein SO4266 (gi 24375750) from Shewanella oneidensis MR-1 at 1.6 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 75, 264-71	4.2	19
40	Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. <i>Journal of Biological Chemistry</i> , 2009 , 284, 25268-79	5 ·4	17
39	Crystal structure of an RNA.DNA hybrid reveals intermolecular intercalation: dimer formation by base-pair swapping. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 9214-9	11.5	16
38	Generation of an Orthogonal Protein-Protein Interface with a Noncanonical Amino Acid. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5728-5731	16.4	13
37	A structural basis for the regulatory inactivation of DnaA. <i>Journal of Molecular Biology</i> , 2009 , 385, 368-8	30 6.5	13
36	Crystal structure of S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) from Thermotoga maritima at 2.0 A resolution reveals a new fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 59, 869-74	4.2	13
35	Crystal structure of Hsp33 chaperone (TM1394) from Thermotoga maritima at 2.20 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 61, 669-73	4.2	13
34	Structural Basis of the Diversity of Adrenergic Receptors. <i>Cell Reports</i> , 2019 , 29, 2929-2935.e4	10.6	13
33	Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. <i>Journal of Molecular Biology</i> , 2009 , 390, 686-98	6.5	12
32	The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu. <i>Protein Science</i> , 2010 , 19, 2131-40	6.3	12
31	Crystal structure of an indigoidine synthase A (IndA)-like protein (TM1464) from Thermotoga maritima at 1.90 A resolution reveals a new fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 59, 864-8	4.2	12
30	Crystal structure of a metal-dependent phosphoesterase (YP_910028.1) from Bifidobacterium adolescentis: Computational prediction and experimental validation of phosphoesterase activity. <i>Proteins: Structure, Function and Bioinformatics</i> , 2011 , 79, 2146-60	4.2	11

(2008-2007)

29	Crystal structure of homoserine O-succinyltransferase from Bacillus cereus at 2.4 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 68, 999-1005	4.2	11
28	Crystal structure of an alanine-glyoxylate aminotransferase from Anabaena sp. at 1.70 A resolution reveals a noncovalently linked PLP cofactor. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 58, 971-5	4.2	11
27	Crystal structure of the ApbE protein (TM1553) from Thermotoga maritima at 1.58 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 1083-90	4.2	10
26	Crystal structure of an alpha/beta serine hydrolase (YDR428C) from Saccharomyces cerevisiae at 1.85 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 58, 755-8	4.2	10
25	Crystal structure of an Apo mRNA decapping enzyme (DcpS) from Mouse at 1.83 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 60, 797-802	4.2	10
24	Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications. <i>ELife</i> , 2017 , 6,	8.9	10
23	A Single Reactive Noncanonical Amino Acid Is Able to Dramatically Stabilize Protein Structure. <i>ACS Chemical Biology</i> , 2019 , 14, 1150-1153	4.9	9
22	Crystal structure of a conserved hypothetical protein (gi: 13879369) from Mouse at 1.90 A resolution reveals a new fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 61, 1132-6	4.2	9
21	Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from Sulfolobus solfataricus. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 74, 1041-9	4.2	8
20	Comparative structural analysis of a novel glutathioneS-transferase (ATU5508) from Agrobacterium tumefaciens at 2.0 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 65, 527-37	4.2	8
19	Crystal structure of a putative modulator of DNA gyrase (pmbA) from Thermotoga maritima at 1.95 A resolution reveals a new fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 61, 444-8	4.2	8
18	Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase. <i>IUCrJ</i> , 2020 , 7, 976-984	4.7	8
17	Crystal structure of NMA1982 from Neisseria meningitidis at 1.5 angstroms resolution provides a structural scaffold for nonclassical, eukaryotic-like phosphatases. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 69, 415-21	4.2	7
16	Crystal structure of phosphoribosylformylglycinamidine synthase II (smPurL) from Thermotoga maritima at 2.15 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 63, 1106-11	4.2	7
15	Crystal structure of an ORFan protein (TM1622) from Thermotoga maritima at 1.75 A resolution reveals a fold similar to the Ran-binding protein Mog1p. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 65, 777-82	4.2	7
14	Crystal structure of MtnX phosphatase from Bacillus subtilis at 2.0 angstroms resolution provides a structural basis for bipartite phosphomonoester hydrolysis of 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate. <i>Proteins: Structure, Function and</i>	4.2	6
13	Crystal structure of AICAR transformylase IMP cyclohydrolase (TM1249) from Thermotoga maritima at 1.88 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 71, 1042-9	4.2	6
12	Crystal structure of an ADP-ribosylated protein with a cytidine deaminase-like fold, but unknown function (TM1506), from Thermotoga maritima at 2.70 A resolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 71, 1546-52	4.2	6

11	Crystal structure of TM1367 from Thermotoga maritima at 1.90 A resolution reveals an atypical member of the cyclophilin (peptidylprolyl isomerase) fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 63, 1112-8	4.2	6
10	Crystal structure of virulence factor CJ0248 from Campylobacter jejuni at 2.25 A resolution reveals a new fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 62, 292-6	4.2	6
9	Direct-methods determination of an RNA/DNA hybrid decamer at 1.15 A resolution. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2001 , 57, 213-8		6
8	Crystal structure of TM1030 from Thermotoga maritima at 2.3 A resolution reveals molecular details of its transcription repressor function. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 68, 418-24	4.2	5
7	Molecular Mechanism for Ligand Recognition and Subtype Selectivity of DAdrenergic Receptor. <i>Cell Reports</i> , 2019 , 29, 2936-2943.e4	10.6	5
6	Structural insights on ligand recognition at the human leukotriene B4 receptor 1. <i>Nature Communications</i> , 2021 , 12, 2971	17.4	4
5	Crystal structures of MW1337R and lin2004: representatives of a novel protein family that adopt a four-helical bundle fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 71, 1589-96	4.2	3
4	An orthogonal seryl-tRNA synthetase/tRNA pair for noncanonical amino acid mutagenesis in Escherichia coli. <i>Bioorganic and Medicinal Chemistry</i> , 2020 , 28, 115662	3.4	3
3	Lactate dehydrogenase from the hyperthermophilic archaeon Methanococcus jannaschii: overexpression, crystallization and preliminary X-ray analysis. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2000 , 56, 81-3		2
2	Advances in Structure Determination of G Protein-Coupled Receptors by SFX 2018 , 301-329		1

Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor **2021** , 184-196