Ka-Luen Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9147991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent. Czechoslovak Mathematical Journal, 2014, 64, 159-171.	0.3	20
2	Developing flipped learning resources to support secondary school mathematics teaching during the COVID-19 pandemic. Interactive Learning Environments, 2023, 31, 4787-4805.	6.4	11
3	Blowup phenomena for the \$\$varvec{N}\$\$ N -dimensional compressible Euler equations with damping. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	1.4	8
4	On the stability of single and multiple droplets for equations of thin film type. Nonlinearity, 2010, 23, 3003-3028.	1.4	7
5	Performance of sixth graders in Hong Kong on a number sense three-tier test. Educational Studies, 2020, 46, 39-55.	2.4	6
6	Blowup of solutions for the initial boundary value problem of the 3â€dimensional compressible damped Euler equations. Mathematical Methods in the Applied Sciences, 2018, 41, 4754-4762.	2.3	5
7	Examining the Differences of Hong Kong and Taiwan Students' Performance on the Number Sense Three-tier Test. Eurasia Journal of Mathematics, Science and Technology Education, 2018, 14, .	1.3	5
8	Existence and uniqueness of small energy weak solution to multi-dimensional compressible Navier-Stokes equations with large external potential force. Journal of Mathematical Physics, 2016, 57, 081513.	1.1	3
9	Finite-time blowup of smooth solutions for the relativistic generalized Chaplygin Euler equations. Journal of Mathematical Analysis and Applications, 2020, 489, 124193.	1.0	3
10	Finite-time singularity formation for <i>C</i> ¹ solutions to the compressible Euler equations with time-dependent damping. Applicable Analysis, 2021, 100, 1774-1785.	1.3	3
11	Boundedness of Fractional Integral Operators on Hardy-Amalgam Spaces. Journal of Function Spaces, 2021, 2021, 1-5.	0.9	3
12	Surviving time estimates of local classical solutions to compressible Euler equations with logarithmic equation of state. Journal of Mathematical Analysis and Applications, 2022, 515, 126458.	1.0	3
13	A symmetry result for an elliptic problem arising from the 2-D thin film equation. Proceedings of the American Mathematical Society, 2016, 145, 853-860.	0.8	2
14	On dry spot and droplet solutions for thin films on the plane. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	1.4	2
15	Finite-time singularity formation for the original multidimensional compressible Euler equations for generalized Chaplygin gas. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	1.4	2
16	Global existence of the threeâ€dimensional compressible Euler equations for generalized Chaplygin gas with damping. Mathematical Methods in the Applied Sciences, 2021, 44, 1176-1184.	2.3	2
17	Local sharp maximal functions, geometrical maximal functions and rough maximal functions on local Morrey spaces with variable exponents. Mathematical Inequalities and Applications, 2020, , 1509-1528.	0.2	2
18	A class of blowup and global analytical solutions of the viscoelastic Burgers' equations. Physics	2.1	1

KA-LUEN CHEUNG

#	Article	IF	CITATIONS
19	Energy stability of droplets and dry spots in a thin film model of hanging drops. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	1.4	1
20	Blowup phenomenon for the initial-boundary value problem of the non-isentropic compressible Euler equations. Journal of Mathematical Physics, 2018, 59, 041502.	1.1	1
21	New weighted functional for non-existence of global solutions to the non-isentropic compressible Euler equations. European Journal of Mechanics, B/Fluids, 2020, 80, 26-31.	2.5	1
22	The Lifespan of Classical Solutions to the (Damped) Compressible Euler Equations. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44, 1867-1879.	0.9	1
23	Exact solutions for the two-dimensional incompressible magnetohydrodynamics equations. Applied Mathematical Sciences, 0, 8, 5915-5922.	0.1	1
24	The Wisdom of Traditional Mathematical Teaching in China. Series on Mathematical Education, 2015, , 3-42.	0.0	1
25	Some exact blowup or global solutions for the non-isentropic Navier–Stokes equations with density-dependent viscosity. Results in Physics, 2012, 2, 55-57.	4.1	0
26	Stabilities for Nonisentropic Euler-Poisson Equations. Scientific World Journal, The, 2015, 2015, 1-6.	2.1	0
27	Perturbational self-similar solutions for the 2-component DegasperisProcesi system via a characteristic method. Turkish Journal of Mathematics, 2016, 40, 1237-1245.	0.7	0
28	Blowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry. Scientific World Journal, The, 2016, 2016, 1-6.	2.1	0
29	Perturbational Blowup Solutions to the Two-Component Dullin-Gottwald-Holm System. Scientific World Journal, The, 2016, 2016, 1-5.	2.1	0
30	Perturbational blowup solutions to the compressible Euler equations with damping. SpringerPlus, 2016, 5, 196.	1.2	0
31	On finite-time blowup mechanism of irrotational compressible Euler equations with time-dependent damping. Applicable Analysis, 2020, , 1-14.	1.3	0
32	Using the Flipped Classroom Model for Student Pre-laboratory Preparation in a Science Course: An Action Research Study. Ubiquitous Learning, 2021, 14, 1-17.	0.2	0
33	Exact self-similar perturbational solutions of Whitham-Broer-Kaup equations. Applied Mathematical Sciences, 0, 8, 7693-7701.	0.1	0